使い方マニュアル

多用途生体情報解析プログラム BIMUTAS[®] II

《内 容》

BIMUTASIIの基本操作

BIMUTASII操作のワンポイント

<u>BIMUTASIIを使用した解析手順</u>

付録1 補足説明

付録2 テキストファイルフォーマット

Wissel Competence **KISSEI COMTEC**

お問い合わせ

BIMUTAS® IIに関するお問い合わせは、下記窓口まで

1章 /	BIMUTASIIの基本操作	····· 1-1
2章 /	3IMUTASII操作のワンポイント	·····2-1
1) タ	ブにデータを表示させるには・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-3
2) タ	ブのデータをテキストデータにするには	2-7
3) 波	形をテキスト出力するには	2-9
4) 固	定幅の範囲を選択するには	2-13
5) 樟	i 軸単位を変更するには	2-15
6) 樟	神・縦軸スケールを変更して、波形を大きく見るには	·····2-16
3章 /	3IMUTASIIを使用した解析手順	·····3-0-1
筋電	図の解析	
1-	 筋放電を確認する	3-1-1
1-	2) 筋疲労を解析する	3-1-5
1-	3) 筋放電を定量化する	3-1-11
1-	4) MVC (最大随意収縮)で比較する	3-1-17
1-	5) 動作単位で正規化する	3-1-21
脳波	の解析	
2-	1) 帯域別に含有量・含有率を算出する	3-2-1
2-	2) 2波形を比較する	3-2-9
2-	3) トリガ信号から脳波を抽出する(誘発脳波)	3-2-17
心電	図・脈波や呼吸の解析	
3-	1) RR 間隔または PP 間隔を表示する	3-3-1
3-	2) RR 間隔または PP 間隔をテキスト出力する	3-3-9
3-	3) LF/HF を算出する	3-3-15
3-	4) 心拍数や呼吸数を数える	3-3-31
3-	5) 最高・最低・平均血圧を算出する	3-3-37
その	也	
4-	1) FFT ポイント数とサンプリング周波数の関係	3-4-1
4-	2) FFT ポイント数と平均回数の関係	3-4-3
4-	3) 平滑化微分点数と移動平均	3-4-5

付録 1	補足説明·····	⋯⋯⋯⋯付録 1-1
付録 2	テキストファイルフォーマット	

BIMUTAS II 基本操作

多用途生体情報解析プログラム

BIMUTAS® II

2012/02/24 3版

BIMUTAS II 基本操作 1-1

<画面の名称>

<用語>

解析

加工

生波形 ・・・収録したままの加工していない状態の波形 データアイコンは青色。

解析波形 ・・・生データの解析後、新しいウィンドウとなり表示された波形 データアイコンは赤色。

- ・・・「解析」メニューのサブメニューを行うこと。
- ・・・「加工」メニューのサブメニューを行うこと。
- コマンド処理 ・・・「コマンド」メニューのサブメニューを行うこと。

<基本操作の流れ>

BIMUTASII は、「波形の選択→解析・加工・コマンド処理」の手順が基本操作となります。

1	①「BIMUTASI」を起動 p1-			
	\downarrow			
2	ファイルを	読み込む	p 1-4	
	\downarrow			
3	波形の処理	里範囲を選択	p 1-6	
	\downarrow			
4	生波形の	加工・解析 または コマンド処理	p 1-8	
		加工の場合	·····p 1-8	
		解析の場合	·····p 1-9	
		コマンド処理の場合	·····p 1-10	
	\downarrow			
5	解析波形の	のコマンド処理	p 1-11	
	\downarrow			
6	⑥「BIMUTASI」を終了 p1-13			

更に詳しい操作説明、パラメータの説明については、

ヘルプ、または「BIMUTASII 操作のワンポイント」や「BIMUTASII を使用した解析手順」を御覧ください。

①「BIMUTAS I」を起動

1)「BIMUTAS II」アイコンをダブルクリックしてソフトを起動します。

ディコンにマウスカーソルを位置づけ、マウスの左ボタンをダブルクリックすると、ウィンドウタイト EIMUTASII ル「BIMUTASII」が表示されます。

② ファイルを読み込む

1)「ファイル」メニューの「開く」を選択します。

2)下のダイアログで、解析したいデータを選択し「開く」ボタンを押します。

ファイルを開く	
ファイルの場所型:	■ BIMUTAST ②ファイルを選択します。
野ラ	検索一覧リスト 連在設定されている格納場所に存在する データー覧が表示されます。 ③ファイルを選択したら「開く」 ボタンを押します。
ファイル名(<u>N</u>): ファイルの種類(T):	sample.KCD まったイントラックは共通Rawitでやコライル(#kkod)
パス(P): 「C*Pro 詳細(D): デャネ ザンジ A/D	eram Files¥KISSEI (1)ファイルの種類が キッセイコムテック共通 Raw デ [・] ータファイル(*.kcd) (225) リング周波数 2000 分解能 16(bit) 16(bit)

3) 選択されたデータが表示されます。

③ 波形の処理範囲を選択

1)処理範囲を選択するウィンドウをアクティブにします。

2)「編集」メニューの「区間の選択方法」から処理対象とする区間の選択方法を選択します。

注: 区間の選択方法は、メニュー項目の下にあるツールバーで代用する事も出来ます。 (押された状態になっている物が現在設定されている選択方法です。 下の図は「フリー範囲」を設定した状態になっています。)

3) 区間の選択方法にあわせて処理範囲の指定を行います。

以下の作業を複数回繰り返して複数の範囲を選択する事も出来ます(但し、解析、加工に制限が生じる場合があります)。また、選択範囲が重なっても構いません。

注: 範囲選択をやり直したい場合は、「編集」メニュー 「区間の選択方法」から、「全選択区間 の解除」を選択した後、はじめからもう一度やり直します。

例:「フリー範囲」を選択した場合

①選択を行いたい波形の開始部分にバーカーソルをあわせ、マウスの左ボタンを押しながら、マウ

②選択を行う範囲の終端でマウスの動きを止め、マウスの左ボタンを離します。

③範囲が選択されました。

④生波形の 加工・解析 または コマンド処理

<加エ>

1)「加工」メニューの「"加工"サブメニュー」を選択します。

例: ローパスフィルタの場合

and BIMUTAS II – [Rawf-4 sample]						
📙 ファイル(E) 編集(E) 表示(V) コマンド(C) 解析(A)	加工(的) ツール(M)	ウインドウ(型) ヘルプ(型) 😑				
	フィルタ 移動平均	► ローパスフィルタ(L) ► ハイパスフィルタ(H)				
KS 女 23才 0ヶ月	整流基線質出	 バンドパスフィルタ(P) バンドストップフィルタ(S) 				
01 21.436 30.00-	データ反転(D) データ置換(<u>P</u>)…	原形LPFの設計(D)				

2)加工のパラメータを設定し、「OK」ボタンを押します。処理の結果が新しいウィンドウに表示されま

注:加工、解析した結果は常に新しいウィンドウに表示されます。 元波形への影響はありません。 また、解析、加工した結果に対して再び加工、解析を行う事もできます。

く解析>

- 1)解析する範囲を選択し、「解析」メニューの「"解析"サブメニュー」を選択します。 処理したい範囲を選択すると、メニューを選べるようになります。
 - 例: FFT の場合

🌆 BIMUTAS II – [Rawデータ sample]							
📙 ファイル(E) 編集(E) 表示(V) コマンド(C)	解析(A) 加工(P)	ッール(<u>M</u>) ウインドウ(<u>M</u>					
<mark> </mark>	周波数解析 積分 微分 自己相関(A)	 ▶ FFT(<u>F</u>), ▶ MEM(<u>M</u>), ▶ AR(<u>A</u>) 					
01 -1.998 uvolt 40.00- 11 30.00- 11 20.00-	相互相関(N) コヒーレンス(H) カロママペカトル(C)	時系列解析▶					

2)解析のパラメータを設定し、「OK」ボタンを押します。解析した結果が新しいウィンドウに表示されま す。

周波鼓解析(FFT)	×		
 解析の設定 区間の指定方法(1) ○ 平均回数(4) ○ FFTボイント数(F) 2048 窓関数(4) ハミング スペクトル単位(1): パワー ゴいドスペクトル(B) 「1000000 H 	バラメータ履歴(P)	行う解析の種類によってパラ の設定方法は異なります。	*-5
0 40 2048 点 × 1 回	01 点 OK 		
		■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■	
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	A dell'alla charierte	表示されます。	
01 0.005 uvolt*2 10.00- 0.00-	h		
UV011*2 10.00- 0.00- 0.00-	20 600	40,000 +	
42.969	20.000	+0.000	

注:加工、解析した結果は常に新しいウィンドウに表示されますので、元波形への影響はありません。 また、解析、加工した結果に対して再び加工、解析を行う事もできます。

<計測>

1)解析する範囲を選択し、「コマンド」メニューの「"処理"サブメニュー」を選択します。

処理したい範囲を選択すると、「選択範囲」メニューを選べるようになります。

例:平均値の場合

🦥 BIMUTAS I – [Rawデータ sample]							
💾 ファイル(E) 編集(E) 表示(V)	コマンド(<u>C</u>) 解析(<u>A</u>)	加工(P) ツール(M) ウインドウ(M					
▶ 日本 10 × 10 × 10 × 10 × 10 × 10 × 10 × 10	マーク 潜時 区間面積						
01 40.00- 1 14.525 30.00- uvolt 20.00	平均値 ピーク値授出 標準偏差 データピックアップ(P)	 バーカーソル区間(C) マーク区間(M) 選択範囲(S) 					

2)「選択範囲」メニューを選択します。解析した結果が波形下のタブ領域に表示されます。

🦥 BIMUTAS II – [Rawデータ sample]							
📕 ファイル(E) 編	集(E) 表示(⊻)	<u>コマンド(©)</u>	解析(<u>A</u>)	加工(巴	ツール(<u>M</u>)	ウインドウ()	
▶ 日子 ▶ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	陶 間 樹	マーク 潜時 区間面積		•	≫ ∿ -		
<u>01</u> 21.436 uvolt	40.00- 1 30.00- 20.00	平均値 ピーク値検 標準偏差 データピック	出 アップ(P)		バーカーソル マーク区間(M 選択範囲(S)		

3)波形下のタブ領域を表示させます。

NE BIMUTAS I	- [Rawデータ sar	nple]				
📕 ファイル(E) 編	集(E) 表示(⊻) コ	マンド(©) 解析(<u>A</u>) 加工(P) ツ-	-ル(団) ウインドウ	๎ ヘルプ田	- 8 ×
🖻 🖬 🎒 🔥			1 🔁 🔯 🖓 /	∿ - ⊞ ⊒		
KS 女 23才 0	ヶ月					
01 7.181 02 -0.462	0.00- 0.00- 0.00-	ann Mun	nternerstent-reported	โลยอาการจะจะจะจะจะ ปฏารณ์การจะจะจะจะจะจะจะจะจะจะจะจะจะจะจะจะจะจะจะ	allowand	myln -
5.750 sec		6.000	9.0	00	12.000	+
マーク 潜時 (0.000sec - 20. 01 uvolt 0.020	面積 平均値 t 000sec) 02 uvolt	(一ク)標準偏著	E ビックアップ	数値リスト		
0.873	0.815		平均値が表示	示されていま	す。	
選択区間数: 1 選	択チャネル数: 2	チャネル数:16	サンプリング	割波数:200.0Hz		11

⑤解析波形のコマンド処理

- 1) 解析波形が表示されているウィンドウをアクティブにします。
- 2) 「コマンド」メニューの「"コマンド処理"サブメニュー」を選択します。

例:データピックアップ(マウスの左ボタンを押した部分の横軸、縦軸の値を出力)を選択した場合

注:加工または解析したウィンドウによって計測できる種類が異なります。 詳しくはヘルプをご覧ください。 3) 波形にカーソルをあわせてマウスの左ボタンを押すと、計測の結果をウィンドウの下にある タブに出力します。

4) タブ上の横棒にマウスカーソルをあわせ(マウスカーソルの形が変わります)、マウスの左ボタン を押しながら上に動かすと、数値が表示されます。

5) パラメータの設定が必要な場合(含有率など)はパラメータの設定を行うと同様の処理が行えま す。

タブの切り替えは、"計測処理"名称の上にマウスカーソルを移動してマウスの左ボタンを押します。 例: 含有率の場合

注:タブ上のテキスト数値はプリンタへの印刷や、表計算ソフトヘコピーする事によってグラフ化などの加 工を行えます。

⑥BIMUTAS I を終了

1)「ファイル」メニューの「BIMUTASIの終了」により、解析を終了します。

BIMUTAS II 基本操作

BIMUTASII 操作のワンポイント

多用途生体情報解析プログラム

BIMUTAS® II

2012/02/24 5版

操作のワンポイント 2-1

ここでは、BIMUTASII-Aを操作する上でのワンポイントを紹介します。

BIMUTASIIの基本的な解析の流れについては「基本操作」を、 BIMUTASIIを使用した解析の具体例については「解析手順」を参照して下さい。

<目次>

1)	計測したデータ(「コマンド」メニューによる数値)を表示させるには	2–3
2)	計測したデータ(「コマンド」メニューによる数値)をテキスト出力するには	2-7
3)	波形をテキスト出力するには	2–9
4)	固定幅の範囲を選択するには	2-13
5)	横軸単位を変更するには	2-15
6)	横軸・縦軸スケールを変更して、波形を大きく見せるには	2-16

1) 計測したデータ(「コマンド」メニューによる数値)を表示させるには

<操作の流れ>

↓ ①計測したい波形を表示させ、計測範囲を選択する。

1.選択範囲を使って、簡便に計測する場合

2.バーカーソルを使って、任意の区間を計測する場合

3.マーク区間を使って、あらかじめ決まっている区間の計測をする場合

②タブ領域を広げ、タブ内のデータを見えるようにする。

①計測したい波形を表示させ、計測範囲を選択する。

1. 選択範囲を使って、簡便に計測する場合

ツールバーのボタンを押し、データの選択方法を決定します。

必要な区間をマウスでドラッグして、選択範囲を設定します。

「コマンド」メニューの「"計測したいメニュー"」の「選択範囲」を選択します。

🚋 BIMUTASI - [Rawデータ sample]						
📙 ファイル(E) 編集(E) 表示(V)	<u>コマンド(C)</u> 解析(<u>A</u>)	加工(P) ツール(M) ウインドウ(M				
	マーク 潜時					
KS 女 23才 0ヶ月	区間面積	▶ バーカーソル区間(<u>C</u>)				
01 -6.641 20.00-	平均値 ピーク値検出 標準偏差	 マーク区間(<u>M</u>) 選択範囲(<u>S</u>) 				

2. バーカーソルを使って、任意の区間を計測する場合

「コマンド」メニューの「"計測したいメニュー"」の「バーカーソル区間」を選択します。

🕷 BIMUTASI - [Rawデータ sample]										
📙 ファイル(E) 編集(E) 表示(V)	コマンド(C) 解析(<u>A</u>)	加工(P) ツール(M) ウインドウ(M								
	マーク 潜時									
KS 女 23才 0ヶ月	区間面積	▶ バーカーソル区間(C)								
01 0.162 20.00-	平均値 ピーク値検出 価準65	マーク区間(M) V 選択範囲(S)								

波形上で、ベースカーソル(1番目の左クリック)を決定します。

波形上で、計測範囲の終端(2番目の左クリック)を決定します。計測範囲の終端は連続して変更することが でき、クリックする度にデータがタブに表示されます。

2-4 操作のワンポイント

ベースラインを変更するには、波形上で右クリックして「ベースカーソルのクリア」を選びます。その後でベース

🚾 BIMUTAS II – [Rawデータ sample] 🔡 ファイル(E) 編集(E) 表示(V) コマンド(C) 解析(A) 加工(P) ツール(M) ウインドウ(W) ヘルプ(H) KS 女 23才 0ヶ月 40.00-<u>01</u> 10.097 11 20.00-uvolt MANNIA 0.00-バーカーソル指定(チャネル毎)(M) バーカーソル指定(全チャネル)(L) -20.00--40.00 02 4.551 '+ 潜時(L) 40.00-区間面積(A) 20.00uvolt 平均値♡) 0.00-ピーク値検出(P) -20.00--標準偏差(S) 「ベースカーソルのクリア」を選択します。 データピックアップ -40.00-数値リスト(N) 7.850 スカーソルの 4 • sec 面積 平均値 ビーク 標準偏差 ビックアップ 数値リスト マーク|潜時 設定されているベースラインをクリアします。

ライン(はじめのクリック)と選択範囲の終端(2度目のクリック)を行います。

3. マーク区間を使って、あらかじめ決まっている区間の計測をする場合

あらかじめ、計測したい範囲にマークをつけます。

例:「コマンド」メニューの「マーク」-「バーカーソル指定(チャネル毎)」で、マークをつける場合

🏧 BIMUTAS II 🕒 [Rawデータ :	sample]	
📕 ファイル(E) 編集(E) 表示(V)	コマンド(<u>C</u>) 解析(<u>A</u>)	加工(2) ツール(M) ウインドウ(W) ヘルプ(H) - ヨ ×
KS 女 23才 0ヶ月 01 -2.538 uvolt 20.00- 0.00-	マーク 潜時 区間面積 平均値 ピーク値検出 標準偏差 データピックアップ(P)	バーカーソル指定(チャネル毎)(<u>M</u>) Ctrl+M バーカーソル指定(全チャネル)(<u>A</u>) Ctrl+Shift 数値指定(<u>W</u>) 削除(<u>D</u>) 表示更新(<u>R</u>) 検索(<u>F</u>)

「コマンド」メニューの「"計測したいメニュー"」の「マーク区間」を選択します。

🦥 BIMUTAS II – [Rawデータ sample]										
🔡 ファイル(E) 編集(E) 表示(V)	コマンド(<u>C</u>) 解析(<u>A</u>)	加工(P) ツール(M) ウインドウ(W)								
	マーク 潜時									
KS 女 23才 0ヶ月	区間面積	バーカーソル区間(C)								
01 8.585 20.00-	平均値 ピーク値検出 	マーク区間(<u>M)</u> 選択範囲(S) K M2								

基準マークと対象マークを選び、「表示」ボタンを押します。基準マークと対象マークとの間が計測されます。

②タブ領域を広げ、タブ内のデータを見えるようにする。

波形の下にある、タブ領域と波形領域の境目にマウスをあわせます。その後ドラッグして上に引き上げます。

波形の下にあるタブ領域が表示され、①で操作したデータが表示されていることがわかります。

🐜 BIMUTASI - [Rawデータ sample]	
📑 ファイル(E) 編集(E) 表示(V) コマンド(C) 解析(A) 加工(P) ツール(M) ウインドウ(W) ヘルブ(H) 💶 🖬 🗙	
KS 女 23才 0ヶ月	
01 0.00- Women with Willing on the work Willing on the work Warshard Warshard Warshard Warshard Warshard war and a start of the second warshard and the second warshard a start of the second s	
02 0.482 0.00 When prove Mer when we and My way to an a second se	
5 225 8.000 9.000 12.000 +	
sec	
マーク 潜時 面積 平均値 ピーク 標準偏差 ビックアップ 数値リスト	
(6.605sec - 11.525sec) 01	
Total uvoltimeec Positive 2088.317 Negative 18815.520 タブ内にデータが表示され	ます。
5	
選択区間数: 0 選択チャネル数: 0 チャネル数:16 サンプリング周波数:200.0Hz //	

2) 計測したデータ(「コマンド」メニューによる数値)をテキスト出力するには

<操作の流れ>

- ↓ ①タブ領域に計測データを表示させる。
- ↓ ②タブ領域を広げ、タブ内のデータを見えるようにする。
- ↓ ③「編集」メニューの「タブ情報」で「全て選択」を選ぶ。
- ↓ ④「編集」メニューの「タブ情報」で「コピー」を選ぶ。
- ⑤任意のテキストツールを起動して、「ペースト(貼り付け)」を行う。

①タブ領域に計測データを表示させる。

この手順については、前項「1)計測したデータ(「コマンド」メニューによる数値を表示するには」を御覧ください。

②タブ領域を広げ、タブ内のデータを見えるようにする。

波形の下にある、タブ領域と波形領域の境目にマウスをあわせます。その後ドラッグして上に引き上げます。

必要なタブをクリックして表示させます。

③「編集」メニューの「タブ情報」で「全て選択」を選ぶ。

77116D	(11) 東示(2) コマンド(2) 解	所由加工のツール国ウインドウ国ヘルフローラン
200	直新の操作を織り返す(U) Ctri	
KS \$2 23.7	チャネルの初期の(1) Cus 建築活動のコピー(2) Cus デールの起い付け(2) Cus 新しいつくつどの活動が付け(2)	and we have a second the second of the secon
5.343	区間の確認方法 区間の設備指定(2)_	, human and prover a second and a second and
4,390	波形以毛	* ·····
マーク 溜响 6.775sec -	トリガ推出(2). 自動指出(2- イベン)相出 加賀平均	ビックアップ 款値リスト
Total Positive Negative	チャネル名称、コペント92。 被教者情報630。 イベント投票102。	
61	なが春朝	A 全て成(R(A), Ctri+Shift+A)

④「編集」メニューの「タブ情報」で「コピー」を選ぶ。

THUT AS I	l − lRaw∓−9 sample]	
27+(ND)	出来(1) 表示(2) コマンド(2) 解析 直前の操作を通り送す(2) Col+F	() MILO 9-140 94760 9116 9 10 10 10 10 10 10 10 10 10 10 10 10 10
KS 女 23才 01 -13.877	チャネルの切り取り(1) C6+3 違規定間のコピー(2) O6+0 データの取り付け(2) C6+3 転しいつくンドウに見り付け(2)	were will be man with a market -
02 -12.335	区間の運択方法 区間の設備指定(W)。	· manually and some many .
5.245 sec	波想从モ	\$.000 12.000 · -
マーク 滑時 (4.775ue -	日ガ抽出(Q)。 自動抽出(Q)。 イベント抽出 加重平均	ビックアップ 数値リスト
Totsi Positive Negative	チャネル名称、コベル他)。 総験者情報図。 イバード株実図。	
191	夕ブ情報	全て成訳(A) Ctrl+Shift+A
選択されているタフ	価格をコピーします。	初知期の(U) Ctrl+Shift+X
		⊐ピー(Q) Ctrl+Shill+C

⑤任意のテキストツールを起動して、「ペースト(貼り付け)」を行う。

例:Excel に貼り付ける場合

Excel を起動します。

8	licrosoft	Excel -	Book1
•	ファイル(E)	編集(<u>E</u>)	表示①
D	🚔 🔛 🕒	0 - *	MSPゴシ
	A1	-	t.
	A	E	3
1			
2			
3			-
4			

「編集」メニューの「貼り付け」を選択します。

Microsoft Excel - Book1								
	ファイル(E)	編	集(E) 表示(V)	挿入仰	() た客	1		
D	🛩 🖪 🕨	кЭ	元に戻せませんし	D	Otrl+Z			
	A1	Q	繰り返しできませ、	h(<u>R</u>)	Otrl+Y			
	A	Ж	切り取り(<u>T</u>)		Ctrl+X			
1		Ē,	⊐ピ–©)		Ctrl+C	-		
2		ren.		12/D3		_		
3			Office クリックホー	-P(<u>B</u>)				
4		2	貼り付け(<u>P</u>)	Ν	Ctrl+V			
5			形式を選択して肌	மா†Юි©)			

タブの内容が Excel シートに貼り付けられます。

🔀 Microsoft Excel – Book1										
	ファイル(E) 編	讓(E) 表示(⊻) 挿入	.Ψ 書式(型) ツール							
🗋 🚅 🔚 🗠 - 🎇 MS Pゴシック 🛛 - 11 🔹 🖪 🧳										
	D6	✓ f _x								
	A	В	С							
1	(6.775sec	-11.355sec)								
2		O1	02							
3		uvolt•msec	uvolt•msec							
4	Total	otal 34961.516 33969.54								
5	Positive	19147.875 18039.025								
6	Negative	15813.641	15930.515							

3) 波形をテキスト出力するには

<操作の流れ>

- ↓ ①生波形または加工した波形を表示させる。
- ↓ ②「ファイル」メニューの「キッセイコムテック共通テキストファイル出力」から、出力方式を選択 する。

1.選択範囲を使って、簡便に出力する場合

2.バーカーソルを使って、任意の区間を出力する場合

③保存先を入力する。

①生波形または加工した波形を表示させる。

生波形でも加工・解析した波形からでも、テキスト出力を行うことができます。

例1:生波形を表示した場合の画面・・・生波形 [データアイコンが青色]

例 2:生波形から FFT を行った場合の画面・・・解析波形 [データアイコンが赤色]

IT BIMUTAS I	- DEFT(19-) Data2			
10 ファイルビ 編	巣(日) 表示(U) コマンド(C) 解析(A) ツール(M) ウ	インドウビタ ヘルプビタ	- 8 ×
KS 女 29才	0ヶ月		and	
01 3.263 uvolt'2 5.994 uvolt'2	250.00- 0.00- 250.00- 0.00-			
8.448	0.000	5.010	18.010	+
112	-	_		-
マーク 含有率	含有量 Median Mean	ビーク ビックアップ E	(一ク周波数)スペクトル	茄桔 標準 • •
、 チャネル数: 分解能:	0.01Hz FFTポイント動	:16304 加算回数:1	意開設:ハミング	1

②「ファイル」メニューの「キッセイコムテック共通テキストファイル出力」から、出力方式を選択する。

1. 選択範囲を使って、簡便に出力する場合

ツールバーのボタンを押し、データの選択方法を決定します。

必要な区間をマウスでドラッグして、選択範囲を設定します。

「ファイル」メニューの「キッセイコムテック共通テキストファイル出力」の「選択範囲」を選択します。

age.	BIMUTAS	II – [Ra	wデータ ロ	DEMO DAT	A(EEG R	aw Wav	eform Dat	a 16ch)	1]
	7711(E)	編集(<u>E</u>)	表示(⊻)	בדטאנ <u>(0</u>)	解析(<u>A</u>)	加工(<u>P</u>) ツール(<u>M</u>)	ウインドウ	^ (ש)ל
	開((O) 閉じる(<u>C</u>)				Ctrl+	•0	∞ ∿ -		DE
E 1	インボート	L.					1		
39 uvo	 上書き保 名前を付	_ 存(<u>S</u>) けて保存(<u>4</u>	y)		Ctrl+	s	lle unhe		n dili
	キッセイコ	ムテック共通	テキストデ	-タファイル出;	力(<u>T</u>)	•	バーカーソル区	.間(<u>B</u>)	MANNA
	ページ設う FineW	宦(<u>G</u>)				, V	選択範囲(<u>R</u>)		l Adda

2. バーカーソルを使って、任意の区間を出力する場合

「ファイル」メニューの「キッセイコムテック共通テキストファイル出力」の「バーカーソル区間」を選択します。

_			e	e e a consee exact	en en en			
₩.	BIMUTAS	II – [Ra	wデータ [EMO DAT	A(EEG R	aw Wave	form Data	a 16ch)1
	7711(E)	編集(<u>E</u>)	表示(⊻)	בדטאי <u>(C</u>)	解析(<u>A</u>)	加工(P)	ツール(<u>M</u>)	ウインドウ(
	開((<u>0</u>) 閉じる(<u>C</u>)	I			Ctrl	ю 🗟	≫ ∿ -	
1 01	インボート エクスボー	· ~						
13 uvo	上書き保 名前を付	存(<u>S</u>) けて保存(<u>4</u>	H)		Ctrl	•S	Le casta	
	キッセイコ	ムテック共美	手キストデ	ータファイル出け	カ(<u>T</u>)	► P	ーカーソル区	.間(<u>B</u>)
	ページ設) FinBl	Ē(<u>G</u>)				jā V	封尺範囲(<u>R</u>)	

テキスト出力する先頭位置で、クリックをします。

◎ □ ● KS 女 23才	<u>×∎∎≣</u> •≁#							
1 0.785 volt'2	250.00-			-				
2	0.00+		- Jule Vier	出力す	る先頭位置	モ でクリッ	クします。	
0.527 volt"2	250.00-	圆	methe					
5.017	0.000	5.000	18.000	· ·				
7ーク 含有車	E 含有量 Median Mean	ピーク ビックアップ	ビーク周波数 スペク	トル面積 標準・				
ャネル数:分解論	た:0.01Hz FFTポイント数:1	6394 加算回發:	1 宮閣数:ハシング	-la				

● BEMUTASI - GFT(パワー) Data2] ■ ファイルビ 編集包 表示① コマンド② 解析の ツール盤 ウインドウ盤 ヘルブ母 0.148 wolt'2 250.00-0.00-Þ 0.047 0.047 uvolt*2 終端位置でクリックします。 250.00-0.00 0.000 5.000 18.000 13,037 マーク | 含有率 | 含有量 | Median | Mean | ビーク | ビックアップ | ビーク周波数 | スペクトル面積 | 標準 🚺 チャネル数: 分解能:001Hz FFTポイント数:16304 加算回数:1 窓開数:ハシング

③保存先を入力する。

テキストデータを保存するダイアログが表示されます。

保存場所を決め、「保存」を押すとテキスト出力が完了します。

注:キッセイコムテック共通テキストファイルについて 当社独自のヘッダ構造を持つテキストファイルです。 フォーマットについては、「付録2テキストファイルフォーマット」を御覧ください。

4) 固定幅の範囲を選択するには

<操作の流れ>

- ↓ ①生波形または加工した波形を表示させる。
- ↓ ②「編集」メニューの「区間選択方法」-「固定幅区間の選択幅設定」を選択する。
- ↓ ③ツールバーの「固定幅区間の全チャネル」ボタンを押す。
- ④波形上で、選択区間を設定する。

①生波形または加工した波形を表示させる。

生波形上でも加工・解析した波形上でも、固定幅選択範囲を設定することができます。 例 1:生波形(時系列データ)を表示した場合の画面・・・生波形 [データアイコンが青色]

例 2: 生波形から FFT を行った場合の画面・・・解析波形 [データアイコンが赤色]

IT BIMUTAS I	- [FFT(/(9-) Data2]			
1 ファイル(E) 編	課(E) 表示(V) コマンド(E)) 解析(A) ツール(M) ウー	(ンドウビ) ヘルプビ)	- 8 ×
688				
KS 女 29才	0ヶ月			
01 9.263 uvolt'2 5.394 uvolt'2	250.00- 0.00- 250.00- 0.00-			
8.448 Hz	0.000	5.010	18.000	, -
マーク含有率	含有量 Median Mean	ピーク ビックアップ ピ	ーク周波数 スペクトル通	液 標準 • •
チャネル数:分解能:	0.01Hz FFTポイント数:	16304 加算回数:1	窓開設:ハミング	1

②「編集」メニューの「区間選択方法」-「固定幅区間の選択幅設定」を選択する。

例1:生波形(時系列データ)を表示した場合・・・生波形 [データアイコンが青色]

10sec の幅を設定

固定の区間幅	
- 指定方法	10000 msec
OK	キャンセル

例 2:解析 (FFT)を行った場合・・・解析波形 [データアイコンが赤色]5Hz の幅を設定

固定の区間幅		×
指定方法 (^ データ点数(C) (^ 時間(T)	5 Hz	
ОК	キャンセル	

③ツールバーの「固定幅区間の全チャネル」ボタンを押す。

④波形上で、選択区間を設定する。

5) 横軸単位を変更するには

<操作の流れ>

- ↓①「ツール」メニューの「オプション」を選択する。
- ↓ ②「軸単位」タブを開く。
- ③横軸単位を設定する。

①「ツール」メニューの「オプション」を選択する。

生波形または加工・解析した波形を表示し、「ツール」メニューの「オプション」を選びます。

AN BIMUTAS	II – [Ra	wデータ	sample]				
💾 דדל (E)	編集(E)	表示⊙		解析(<u>A</u>)	加工(P)	ツール(<u>M</u>)	ウインドウ
28	よ国日		•• •••		J 📚 4	マクロ	•
KS 女 23才	0ヶ月					オフション	K.

②「軸単位」タブを開く。

Г

③横軸単位を設定、「OK」ボタンを押すと、波形に適用されます。

オプション	?×	
表示フォント 色 [輕単位] 表示一般 タブ欄設定 印刷波形 時間 ① 10 (sec) ▼ 実時間表示する(R) 「周波数(F) 「ハルツ (H2) ▼ 横軸グリッド表示 間隔(6)波数/H2)(S): 500 0K キャンセル 適用	}	時系列データの横軸単位 周波数データの横軸単位

注:実時間表示(実際に	こ収録した時間で表示)する	場合
時間を「時分秒」または「	HMS」とし、「実時間表示する」チ	ェックボックスにチェックを入れてください。
┌時間(工)		
時分(HMS)	▼ 実時間表示する(<u>R</u>)	

6)横軸・縦軸スケールを変更して、波形を大きく見せるには

く操作の流れ>

- ↓ ①生波形または解析波形を表示する。
- ↓ ②横軸スケールを変更する。
- ③縦軸スケールを変更する。

①生波形または解析波形を表示する。

例:生波形を表示した場合

THE BIMUTAS I	- Rawr-& sam	uple]		
1 ファイル(E) 編	集(日) 表示(2) コマ	マンド(C) 解析(A) 1	第二(2) ツール(2) ウインド	7660 ANF768 - 8 ×
	1916151 -		<u> </u>	
Na 37 2207	17 19			
01 16.037 uvolt	150.00- 150.00- 50.00- 0.00- -50.00- -100.00- -150.00- -150.00-	-2-21 gdfgament-2	~~~*******************	
02 8.503 uvolt	100.00 100.00 50.00 -50.00 -50.00 -50.00 -50.00 -100.00 -150.00 -200.00		~~~*##~**#############################	Notesta
11.835 sec		10.000	1 20.000	30.000 +
マーク Man 選択区開始: 0 通				i iz

②横軸スケールを変更する。

- 1.波形上で設定する場合
 - ・横軸スケールを広げる場合

・横軸スケールを縮める場合

2.メニューで設定する場合

2-16 操作のワンポイント

「表示」メニューの「拡大・縮小」-「横軸数値指定」を選択します。

🦥 BIMUTAS II – [Rawデータ sample]							
🔡 ארקד 🔡	編集(<u>E</u>)	表示♡	コマンド(<u>C</u>)	解析(<u>A</u>)	加工(P)	ツール(<u>M</u>)	ウインドウѠ
BB	X 国	- 拡大・約 縦軸ス	宿小 ケール設定(⊻))	▶ わ わ	■軸数値指定 ■■バーカーン	<0 √指定(B)
KS 女 23才	0ヶ月	縦軸スタンション 縦軸スタンション (1997) (19977) (19977) (19977) (19977) (19977) (19977) (19977) (19977) (19977	ケールの自動詞	没定	1	鏈酸值指定	: (Y)
01	- 200	バニール	(→)				

表示する範囲の数値を入力し、「OK」を押します。

積軸数	植指定						
	左端値心	4000	msec	: -	右端値(<u>R</u>	14000	msec
MIN:	0.000			мах	112635.00	0	
		ОК			キャンセル	/	

③縦軸スケールを変更する。

1.波形上で設定する場合

・縦軸スケールを広げる場合

・縦軸スケールを縮める場合

2.メニューで設定する場合

「表示」メニューの「拡大・縮小」-「横軸数値指定」を選択します。

🦥 BIMUTAS II – [Rawデータ sample]						
🚽 ファイル(E) 編集(E)	表示⊙	<u>סאעדם (0</u>)	解析(<u>A</u>)	加工		
	拡大·希	阁小		•		
	縦軸スク	ケール設定(型)				
NO 5 207 07A		ノールの自動語	irte V	-1		

変更するチャネルを選択して、縦軸数値を入力し、「OK」を押します。 「更新」を押すことで、表示の見た目を確かめることができます。

紙軸スケール	
₩軸値(\) 縦軸数	(値を人力します。
100 uvolt	
大きく ――― 」―― 小さく	☞ 左側心
z, ±1(0)	○ 非表示型
ナヤ-バル <u>()</u> : 9:01	
11: F7 12: F8	UK
13: F2 14: P2 15: T5 16: T6	更するチャネルを選択します。
	更新(<u>A</u>)
BIMUTASII を使用した解析手順

多用途生体情報解析プログラム

BIMUTAS® II

解析手順

Ð

2012/03/19 3版

3-0-1

BIMUTAS IIでは、機能を組み合わせて様々な解析作業を行う事が出来ます。

BIMUTASII の基本的な解析の流れについては「基本操作」を、

BIMUTASIIを操作する上でのワンポイントについては「操作のワンポイント」を参照してください。

<目次>

筋電図の解析

1-1)	筋放電量を確認する	3-1-1
1-2)	筋疲労を解析する	3-1-5
1-3)	筋放電を定量化する	3-1-11
1-4)	MVC(最大随意収縮)で比較する	8-1-17
1-5)	動作単位で正規化する	3-1-21

脳波の解析

2-1)	帯域別に含有量・含有率を算出する	-3-2-1
2-2)	2 波形を比較する	-3-2-9
2-3)	トリガ信号から脳波を抽出する(誘発脳波)	·3-2-17

心電図・脈波や呼吸の解析

3-1) RR 間隔または Peak to Peak 間隔を表示する	3-3-1
3-2) RR 間隔または Peak to Peak 間隔をテキスト出力する	3-3-9
3-3) LF/HF を算出する	3-3-15
3-4)心拍数や呼吸数を数える	3-3-31
3-5) 最高•最低•平均血圧を算出する	3-3-37

その他

4-1) FFT ポイント数とサンプリング周波数の関係	3-4-1
4-2) FFT ポイント数と平均回数の関係(加算平均)	3-4-3
4-3) 平滑化微分点数と移動平均	3-4-5

<u>筋電図の解析</u>

1-1) 筋放電量を確認する

筋放電が起こっている時間や量を目で見て観察しやすいように表示します。

筋放電量を確認するには、2つの方法があります。

1. 積分(タイムリセット)

波形を自動的に全波整流し、ある一定時間(一般的に 50~200msec)に達した時、連続的に積分し続けた値をゼロに戻す解析方法です。単位時間の筋放電量変化をわかりやすく表示します。

< 操作の流れ >
筋電図の生波形を表示する。
チャネル全体、またはデータ全体を選択する。
「解析」メニューの「積分(符号なし)」を選択する。
タイムリセットの条件を設定する。
積分(タイムリセット)が新しいウィンドウに表示される。

筋電図の生波形を表示する。

チャネル全体、またはデータ全体を選択する。

ツールバーで「チャネルの全範囲」ボタンを、

月。	チャネルの全範囲

月	へ、 全範囲を選択します。

または、「全範囲を選択します。」ボタンを押します。

波形上でクリックすると、選択区間が表示されます。

「解析」メニューの「積分(符号なし)」を選択する。

🌆 BIMUTAS II - [解析データ Data2]		
📙 ファイル(E) 編集(E) 表示(V) コマンド(C)	解析(A) 加工(P)	・ ツール(M) ウインドウ(W)
	周波数解析 積分	▶ ↓) 一 一 一 一 一 一 一 一 一 一 一 一 一
Hanako Kissei 女 31才 6ヶ月 2003.05.28 コメ <u>ント挿入しました。</u>	微分 自己相関(<u>A</u>)	· 符号あり(S)

タイムリセットの条件を設定する。

「タイムリセット」タブをクリックして前面に表示させた後、以下を設定して「OK」ボタンを押します。

鉄分(符号なし)			2 🔀	(解析種類:	振幅積分または面積積分
ノーマル レベルリセット ③ 解析種類(D) 別みの種類(Q) リセッティング数値(B)	ロンジビット 日本の個々な分 「米中の間」 100	¥ ¥ msec	バラメータ離歴(1)	く 刻みの種類: リセッティング数値	実時間 直:一般的に 50~200msec
最小德	7812		K 年45元16	被験者同士で波形を 解析種類を揃えて行	E並べて観察するためには、 う必要があります。

振幅積分と面積積分の算出方法については、ヘルプを御覧下さい。

積分(タイムリセット)結果が新しいウィンドウに表示される。

筋放電量が多いと、積分波形が大きくなります。

3-1-2 筋放電量を確認する

2. 包絡線

波形を自動的に全波整流し、波形のピークをなぞるような穏やかな線を描くようにする解析方法です。筋放電量 変化をわかりやすく表示します。

< 操作の流れ > 筋電図の生波形を表示する。 チャネル全体、またはデータ全体を選択する。 「解析」メニューの「包絡線」を選択する。 設定ダイアログを設定する。 包絡線が新しいウィンドウに表示される。

筋電図の生波形を表示する。

チャネル全体、またはデータ全体を選択する。

ツールバーで「チャネルの全範囲」ボタンを、または、「全範囲を選択します。」ボタンを押します。

月二次。	チャネルの全範囲

	≈ %	\wedge
 ∽\ 全範囲	を選択しま	す。

確認したい波形上でクリックすると、選択区間が表示されます。

🏧 BIMUTAS II - [解析データ Data2]							
📙 ファイル(E) 編	集(E) 表示(y	<u>(0</u>)אנדב (解析(A)	加工(P)	ツーノ		
≥∎ ∰ ∦	🖻 🖻 🔁		周波数 積分	解析			
Hanako Kissei 2003.05.28 コメ	微分 自己相関(A)		-•				
<u>15LlegEMG</u> -0.173	1.20-	1	相互相	関(N) 関(N)			
volt	0.80-		クロスス	ンベロ/ ペクトル(<u>C</u>)			
	0.40-		伝達関 波形演))近…)算	•		
	0.00-	<u>+</u> 4	 包絡線 ピーク核 	(E) 读索(K)/3	-		

「解析」メニューの「包絡線」を選択する。

設定ダイアログを設定する。

以下を設定して「OK」ボタンを押します。

例: ピークホールドの場合

包絡線	
 計算方法 ・ビークホールド(P) ・ビークホールド(P) ・ビークホールド(P) ・ ・<	計算方法: ピークホールドまたはヒルベルト変換 平滑化微分点数:ピークホールドを選択した場合、 設定が必要です。

注:平滑化微分点数の設定方法 平滑化微分点数を大きくする 包絡線がなだらかになります。 小さくする 包絡線が細かくなります。 平滑化微分点数の決定方法に標準は無く、実際に試していただき筋放電が見やすい状態にして頂く必要があります。 詳しくは、「4-1) 平滑化微分点数と移動平均」を御覧ください。

包絡線が新しいウィンドウに表示される。

BUBBBBBBB	i and the second se					011188
THAD #	BE AND JONG	STR WHA	7-5世 01240	8 4,878		100.000
-10			N RIGHAR	1960	1 10 1 1 1 1 1 1 1	
and a local set	LIT IN				0.010	
N.C. IL.M.M.	HALRLE.					
100	8,30		r -			
	8.80	A				
-						C 16 50
Hanakip Bilate	1 2 10 HR					
2003.05.28	SHEALENES.					
0.111	2.38					
	1.00-					
	1.00	Sec.				
	4.70		Λ.			
		NM	, Mappin	-		
-						- und
98.889	1.00	1.00	10.36	15.34	18,388	18,500
7	SEPLIMIN D	ARC 1		H000-08-42		AIR 11

筋放電量が多いと、積分波形が大きくなります。

筋電図の解析

1-2) 筋疲労を解析する

筋電を一定時間毎に抽出した後、Median または Mean 周波数を計測します。 一般的に、「筋疲労が生じると Median または Mean 周波数が徐々に低周波数帯へ移動する」と言われています。

<操作の流れ> 筋電図の生波形を表示する。 「編集」メニュー「自動抽出」を選択し、波形を一定時間毎に分割する。 データ全体を選択する。 「解析」メニューの「周波数解析」から「FFT」を選択する。 「コマンド」メニュー「Median」または「Mean」から「計算」を選択する。 Median 周波数または Mean 周波数が、タブ領域に表示される。 タブ領域内の Median 周波数または Mean 周波数をコピーし、表計算ソフトで加工する。

筋電図の生波形を表示する。

「編集」メニュー「自動抽出」を行い、波形を一定時間毎に分割する。

「編集」メニューの「自動抽出」を選択します。

自動抽出ダイアログで条件を設定します。

例: データ長 20sec を、 先頭から 500msec 毎に分割する場合

抽出開始~抽出終了時間:データ全長 抽出間隔:抽出区間同士に間隔を持たせる場合 に入力する。 抽出時間:自動抽出される1波形の時間

この場合、500msec長の波形が40個抽出されます。(データ長 20sec÷抽出時間 0.5sec=40 個)

新しいウィンドウに、抽出された波形が切り出されて縦に並びます。

データ全体を選択する。

ツールバーで「全範囲を選択します。」ボタンを押します。

3-1-6 筋疲労を解析する

データ全てが選択されます。

1003.05.28 g	#X. 202.		
	•		
1.433	1.00	1.50	0.400

「解析」メニューの「周波数解析」から「FFT」を選択する。

🦥 BIMUTAS II – [解析データ Data2]							
💾 ファイル(E)	編集(E)	表示⊙	コマンド(<u>C</u>)	解析(<u>A</u>)	加工(2)	ツール(<u>M</u>)	ウインドウ@
	X 🗈	e 🖓 🗌		周波数	解析	▶ FF1	r(E)
				積分		ME ME	M(<u>M</u>)

「FFT」ダイアログの設定を行います。

周波鼓解将(FFT)			区間の指定方法	平均回数が1回になるように指定するのが
解析の設定 区間の指定方法① ○ 平均回数(A) ④ FFTポイント数(2)	512 V	バラメーク履歴(2)	窓関数:	一般的です。 ハミングまたはハニングが一般的です。
窓開数(W) スペクトル単位(U) ビュモギスペクトル(D)	ハミンダ パワー ・ 「1950087 Hz	×	スペクトル単位:	パワー
間波数分解能: 0	1.953 Hz 521 /	全データ点数	数 521 点の内、 先頭 5	512 点分が FFT されます。
FF	× 1回 T ポイント数	平均回数	(一般的に1回に設)	定します)

 注:FFT ポイント数の設定方法 筋電図の場合、一般的に平均回数が1回となるように FFT ポイント数を設定します。
 FFT ポイント数 < 全データ点数の場合: データ先頭から FFT ポイント数分のデータが FFT 解析に使用されるため、データ後半は FFT 結 果に反映されません。
 FFT ポイント数 > 全データ点数の場合: FFT するために足りないデータは、自動的に 0 で埋められます。
 詳しくは、「4-1) FFT ポイント数とサンプリング周波数」を御覧下さい。 FFT 結果が新しいウィンドウに表示されます。

271AQ			- 0 ×		
Hanako Kizs 2003.05.28 15LiegEMG 0.000	HALFLE.		1		
15L1egEMG 0.000 15L1egEMG 0.000	1.00+000- 8.000-000- 5.000-000-		+-ボタ 素示さ	ンのクリックで わる波形の数が恋再しま	· +
151_1egEMG 0.000 494,128	0.00+1000- MWAM	280.000 400.	1x/xC	100//2/12/0922/13-交生//3	
R2 マーク 含有	▲ 車 含有量 Median Mean ピーク	ビックアップ ビーク和波動 スペクトル			

「コマンド」メニュー「Median」または「Mean」から「計算」を選択する。

🦥 BIMUTAS II - [FFT(パワー) Data3]							
🗒 ファイル(E) 編集(E) 表示(V)	בדטאנ <u>י</u> ם	解析(<u>A</u>)	ツール(<u>M</u>)	ウインドウ()			
	含有率… 含有量		, C	⇒ <u>∿ </u> – ‡			
Hanako Kissei 女 31才 6ヶ月	Median		▶ ह	算.			
2003.05.28 コメント挿入しまし7	Mean		▶ 妻	いん しょうしん こうしん こうしん こうしん しょうしん しょうしょう しょうしん しょうしん しょうしん しょうしん しょうしん しょう しょうしん しょう しょうしん しょうしょう しょうしょう しょう しょうしん しょうしん しょうしん しょうしん しょうしん しょうしん しょうしん しょうしょ しょう しょう しょう しょう しょう しょう しょう しょう し			

Median または Mean 周波数の計算方法を指定します。

Median計算	×	
「算出範囲の指定」		
● 全範囲(A)	∫ 全範囲で行うの;	が一般的です。
○ 指定範囲(2)	Hz - Hz	
OK	キャンセル	

Median 周波数または Mean 周波数が、タブ領域に表示される。

タブ領域を拡大して、計測データを表示させます。

タブ領域が広げられ、Median 周波数が計測されていることがわかります。 生波形の

> 0msec ~ 500msec の Median 周波数 500msec ~ 1000msec の Median 周波数 1000msec ~ 1500msec の Median 周波数

のように、連続した時系列上の Median 周波数の数値が、左から順に表示されています。

また、波形上には算出された Median 周波数の位置が赤線で表示されています。

:10100)Median 周波数位置を確	審認する場合
右下の「-」:	ドタンを連続してクリック 表示	₹される波形が少なくなります。
右下の「+」;	ドタンを連続してクリック 表示	₹される波形が多くなります。
-	FT(パワー) Data3]	
2711月日 編集日	● 第三〇 コマンドロ 新新台 シールゼ ウインドウビ へ)	4709 _ 0 ×
Hanako Kitsei 安 2003.05.28 コメント	がす。キャ月 博入しました。	
0.000 8-0	A1000 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
0.000 0.0	aligge www.	「「ギタンのち川」」ちず
0.000 0.0	##000- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+- 小タンのクリックで
0,000 8-8	a1000- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
0.000 A-0		
0.000 0.		7
196.715	8.000 50.000	100.000
72 クレク 会会主 会会	Bedien Mann P-2 Pub7ud P-20048	7×25-1-2000 (2011)
F#2.621:40 SHEP1	SEN: FFTポイント和1512 加賀田和11 定期時間:/	1257

タブ領域内の Median 周波数または Mean 周波数をコピーし、表計算ソフトで加工する。

タブ領域内で右クリックして、「すべて選択」を選びます。

タブ領域内が選択された(色反転している)ことを確認した後で、再びタブ領域内で右クリックして、「コピー」を選びます。

マーク「含有率」含有量	Median M	ean 「ビーク「ビック	'アップ↓ピー!
15LlegEMG 24.408	15LlegEMG 24.180	15LlegEMG 元に戻す(U)	15LlegEMG
		切り取り(工)	
		コピー© 貼り付け(P)	
<		削除(<u>D</u>)	
チャネル数:40 分解能:1.95	Hz FFT	すべて選択(<u>A</u>)	
		1	

表計算ソフト(例:Excel)を起動します。

🔀 M	icrosoft E	xcel – Book	1		
8	ファイル(E)	編集(E) 表示	⊠ 挿入Φ	書式(0) り	ッール(<u>T</u>) デ
D	🖻 🔛 🗠	- 🎽 MS P:	ゴシック	• 11 •]	B <i>I</i> <u>U</u>
	A1	•	fx.		
	A	В	С	D	E
1]			
2		Ţ			

表計算ソフト上で「貼り付け」を選びます。

🔀 Microsoft Excel - Book1						
8	ファイル(E)	編	賬(E) 表示(⊻) 挿入(⊈) 書式(<u>0</u>)		
D	2 🖬 🕨	s)	元に戻せません(U)	Otrl+Z		
	A1	U	繰り返しできません(<u>R</u>)	Ctrl+Y		
	A	*	切り取り(T)	Ctrl+X		
1		8	⊐ピ–©)	Ctrl+C		
2		6	Office クリップボード(<u>B</u>)			
4		2	貼り付け(P) _N	Ctrl+V		
5			形式を避け Shind(+)	c) (2)		

Median 周波数が表計算ソフトに表示されました。グラフ等の加工を行うことができます。

	e M	icrosof	t Exce	I = Bo	ok1								
Ē	ł	ファイル(E))編集	ŧ(<u>E</u>) ∦	£∓W	挿入仰	書式(<u>O</u>)	ツール(D 7	"一タ(<u>D</u>)	ウイン	«Ծ(₩)
Ē	ľ	🛩 🔛	K) •	°, ₩S	Pゴシック	7	- 11	•	B /	<u>U</u>			19
		A1		•	fx	15	LlegEl	MG					
		А	ι	E	3	C)		D			E	
	1	15	5LlegE	15	5 LlegEl	15	5LlegE	N	15L	legEN	1	5LlegE	M 1
	2	2	4.408		24.18	2	29.514		30	.226		31.12	3 3

筋電図の解析

1-3) 筋放電を定量化する

2つの事象について比較をしたり、経過時間による筋放電量変化をグラフ化するために、筋放電を定 量化します。

筋放電を定量化するには、2つの方法があります。

1. 積分の時系列変化を表示し	定量化する
2. 積分値を直接求める	

積分の時系列変化を表示し定量化する
 波形を自動的に全波整流し、積分します。経過時間による変化をグラフで表示します。

< 操作の流れ > 筋電図の生波形を表示する。 解析する波形の一部または全体を選択する。 「解析」メニューの「積分(符号なし)」を選択する。 「ノーマル」ダイアログを設定する。 積分(ノーマル)が新しいウィンドウに表示される。 「コマンド」メニューの「データピックアップ」を選択する。 タブ領域に積分値が表示される。

解析する波形の一部または全体を選択する。 ツールバーで選択区間モードボタンを押します。

例:フリーモードで選択する場合、「フリー範囲」ボタンを押します。

•••	
月	「シリー範囲」

波形範囲をドラッグすると、波形に選択区間が表示されます。

「解析」メニューの「積分(符号なし)」を選択する。

🌆 BIMUTAS II ~ [解析データ Data2]		
🔡 ファイル(E) 編集(E) 表示(V) コマンド(Q)	解析(A)加工(P)	ツール(型) ウインドウ(型)
≤∎⊜⊼⊵∎⊒	周波数解析 積分	▶ <u> </u> ▶ 符号なし(<u>Q</u>) <mark>、</mark>
Hanako Kissei 女 31才 6ヶ月 2003.05.28 コメント挿入しました。 151.1~5100	微分 自己相関(A)	・ 符号あり(S)

「ノーマル」ダイアログを設定する。

「ノーマル」タブをクリックして前面に表示させた後、以下を設定して「OK」ボタンを押します。

秩分(符号なし)			? 🛽
(Z-TE) LANDEN	- 91 JU U27 -		1000
AF#F程期(A)	面積積分	•	
		OK	キャンセル

解析種類: 面積積分または振幅積分 被験者同士で波形を並べて観察するためには、 解析種類を揃えて行う必要があります。

振幅積分と面積積分の算出方法については、ヘルプを御覧下さい。

積分(ノーマル)が新しいウィンドウに表示される。

「コマンド」メニューの「データピックアップ」を選択する。

🦥 BIMUTAS II - [積分(ノーマ)	1) Data2]		
💾 ファイル(E) 編集(E) 表示(V)	<u>コマンド(©)</u>	解析(<u>A</u>)	加工低
	マーク 潜時		• •
Hanako Kissei 女 31才 6ヶ月 2003.05.28 コメント挿入しました	回帰直線 データピッグ	ካምップ(P)	•
15LlegEMG -	数値リスト	43	Þ

波形上の積分値を求める点にマウスを合わせ、クリックします。

タブ領域に積分値が表示される。

タブ領域を拡大して、計測データを表示します。

タブ領域が広げられ、積分値が計測されていることがわかります。 同様に、別の積分結果から積分値をデータピックアップして数値を比較します。

BIMUTAST - (数分(ノーマル) Deta2)	
18 ファイルビ 編集の 表示の コマンドロ 解析の 加工の クールの ウインドウ油 ヘルフロ	- # ×
Hanako Kissei 女 31才 49月 2000.05.23 コメント挿入しました。 15.1eg48	クリックした位置は赤で印がつきます。
733.585 500.00- volt-spec	
10.102 0.000 0.000 0.000	12.644
マーク (2014) 回映直線 ビックアップ (数値リスト) sec 18.Ling.DMG	
11.589 ************************************	プした値(積分値)が表示されています。
	2

2. 積分値を直接求める

波形の面積積分を行い、その値を直接算出する方法です。

< 操作の流れ > 筋電図の生波形を表示させる。 解析する波形部分を選択する。 「コマンド」メニューの「区間面積」-「選択範囲」を選択する。 タブ領域に積分値が表示される。

解析する波形部分を選択する。

ツールバーで選択区間モードボタンを押し、波形を選択します。

例:フリーモードで選択する場合、「フリー範囲」ボタンを押します。

月	「シリー範囲」

波形範囲をドラッグすると、波形に選択区間が表示されます。

🦥 BIMUTAS II - 「解析データ」	Data2]	
📙 ファイル(E) 編集(E) 表示(V)	コマンド(<u>C</u>) 解析(<u>A</u>)	加工(P) ツール(M) ウインドウ()
	マーク 潜時	
Hanako Kissei 女 31才 6ヶ月	区間面積	▶ バーカーソル区間(<u>C</u>)
2003.05.28 コメント挿入しまし7	平均値	▶ マーク区間(<u>M</u>)
15LlegEMG 2.00- 1	ピーク値検出	▶ 選択範囲(<u>S</u>)
0.03/ 1.60-	標準偏差	• T

「コマンド」メニューの「区間面積」-「選択範囲」を選択する。

タブ領域に積分値が表示される。

タブ領域を拡大して、計測データを表示させます。

タブ領域が広げられ、区間面積 [積分値] が計測されていることがわかります。

同様に、別の波形から積分値を算出して数値を比較します。

BIMUTASII を使用した解析手順

<u>筋電図の解析</u>

1-4) MVC(最大随意収縮)で比較する

個人間では、単なる積分値などの絶対量を用いて比較はできません。そのために MVC を用いて最 大収縮からの比率を求め、筋放電を比較します。

100%MVCを用いて比率を求めることで、個人間の比較が可能になります。

<操作の流れ>

- ↓ ①100%の力を込めて記録した、筋電図の生波形を表示する。
- ↓ ②筋放電の強い区間を選択する。
- ↓ ③「加工」メニューの「整流」-「全波整流」を選択する。
- ↓ ④「コマンド」メニューの「ピーク検出」または「平均値」を選択して、値をメモする。
- ↓ ⑤実際の筋電図の生波形を表示する。
- ↓ ⑥「解析」メニューの「波形演算」-「単項演算」を選択し、メモした値を入力する。
 ⑦縦軸が比率になって表示される。

①100%の力を込めて記録した、筋電図の生波形を表示する。

この時点で基線がずれている場合は、ヘルプの「加工」-「基線算出」をご覧ください。

②筋放電の強い区間を選択する。

ツールバー「フリー範囲」ボタンを押します。

月	りリー範囲

波形範囲をドラッグすると、波形に選択区間が表示されます。

③「加工」メニューの「整流」-「全波整流」を選択する。

🐄 BIMUTAS II - [Rawデータ 拮抗筋EMG01]							
🔡 ファイル(E) 編集(E) 表示(V) コマンド(C) 解析(A)	加工(P) ツール(M) ウインドウ(W) ヘルプ(H)						
	7-1ルタ 2-11月日日 2-11月1日日 2-11月1日 2-11月11日 2-11月111日 2-11月1111111111111111111111111111111111						
	整流 ▶ 全波整流(E)						
R前脛骨筋 -0.083 2.75-	基線算出 ▶ 半波整流(プラス)(P) データ反転(I) 半波整流(マイナス)(M)						

④「コマンド」メニューの「ピーク検出」または「平均値」を選択して、値をメモする。

ツールバーで「全選択」ボタンを押し、波形を全選択します。

	6 0 /?
全範囲を選択し	ます。

最大値を取得するときは「コマンド」メニューの「ピーク検出」-「選択範囲」を選択します。 また、平均値を取得するときは「コマンド」メニューの「平均値」-「選択範囲」を選択します。

タブ領域を拡大して、計測データを表示します。

タブ領域が広げられ、最大値または平均値が計測されていることがわかります。

最大値を取得する場合は[ピーク]タブの「Upper-Value」、平均値を取得する場合は[平均値]タブ値をメモします。

100%MVC であれば、メモした数値をそのまま使用します。

⑤実際の筋電図の生波形を表示する。

この時点で基線がずれている場合は、ヘルプの「加工」-「基線算出」をご覧ください。

⑥「解析」メニューの「波形演算」-「単項演算」を選択し、メモした値を入力する。

ツールバーで「全選択」ボタンを押し、波形を全選択します。

	ł
全範囲を選択します。	

「解析」メニューの「波形演算」-「単項演算」を選択します。

マテイル(E) 編集(E) 表示(Y) コマンド(C) 詳析(A) 加工(P) ツール(M) ウインドウ(W) ご 日 一 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	🏧 BIMUTAS II – [Rawデータ 拮抗筋EMG01]							
	== 771N(E)	編集(E)	表示(<u>V</u>)	コマンド(C)	解析(<u>A</u>)	加工(P)	ツール(<u>M</u>)	ウインドウ(₩)
微分 ● 6己相関(A) 6己相関(A) 0.287 2.50- m ^V 2.25-	B	X 🗈 I		•••	周波数 積分	解析	↓	
P前脛骨筋 2.75-1 相互相関(M) 0.287 2.50- コヒーレンス(H) m ^V 2.25- クロススペクトル(O)					微分 自己相	関(A)	•	
0.287 2.50- mV 2.25- コヒーレンス(出) クロススペクトル(C)	<u>B前脛骨筋</u>	2	.75- 1		相互相	関(N)		
2.25- クロススペクトル(C)	0.287 mV	2	.50-		コヒール	ンス(<u>H</u>)		
	mir	2	.25-		クロスス	ペクトル(<u>C</u>)		
2.00- 伝達開数(丁)		2	.00-		伝達関	數(工)		
1.75- 波形演算 → 2項演算(B)		1	.75-		波形演	算	▶ 2項	[演算(B)
1.50- 1.25 包絡線(<u>E</u>) 単項演算(M)		1	.50-		包絡線	(<u>E</u>)	単:	項演算(<u>M</u>)

単項演算の式を入力します。

演算種別: 「÷」を選択します。 演算値: メモしておいた値を入力します。

「登録」ボタンを押してから、OK ボタンで閉じます。

波形演算について詳しくは、ヘルプを御覧下さい。

⑦縦軸が比率になって表示される。

縦軸の値が、入力した値を1.0 とした比率となって(~-1.0~0~1.0~)表示されます。 BIMUTASIIの仕様上、縦軸単位は前のままですが、単位を無視してください。

値をテキスト出力する場合は、ワンポイント集をごらんください。

筋電図の解析

1-5) 動作単位で正規化する

歩行などの繰り返し動作を比較する方法の1つです。 動作が一度終わるまでの時間はそれぞれ違うため、そのまま比較はできません。そのために、1動作 が終わる時刻を100%として、横軸を揃えて(=正規化して)から比較します。

正規化することによって、試行毎や個人間の筋放電の比較が可能になります。 フットスイッチを用いた歩行解析を例として、説明します。

<操作の流れ>

- ↓ ①筋電図の生波形を表示する。
- ↓ ②フットスイッチから、1歩行周期(1動作分)を選択する。
 - 1)「編集」メニューの「トリガ抽出」で、歩行動作開始点を抽出する。
 - 2)「編集」メニューの「区間の数値指定」で、選択区間の終点を入力する。
- ↓ ③新しいウィンドウに張り付ける。
- ↓ ④リサンプリングしてデータ点数をそろえ、値をテキスト出力する。
 - 1)同じ長さのチャネルについて、波形を全選択する。
 - 2)「加工」メニューの「整流」-「全波整流」を選択する。
 - 3)「加工」メニューの「リサンプリング」を選択して、データ点数をそろえる。
 - 4)「ファイル」メニューの「キッセイコムテック共通テキストファイル」を選択する。

⑤表計算ソフトで、縦軸を加算平均し、横軸を100%に換算する。

①筋電図の生波形を表示する。

この時点で基線がずれている場合は、ヘルプの「加工」-「基線算出」をご覧ください。

RE BIMUTAS E	Raw?-9 Striff	E Mal				
■ 7HAB 単 ● ■ 母 人				9 0		1.0
Bight Quad(Quadri 0.081 af	1.000 1.000 1.440 1.1200 1.000 -1.000 -1.000 -1.000			s-martin	4-1-44	*
Right Foot Selfor	1,10- 1,20- 1,20- 1,00- 1,00- 1,00- 1,00- -6,00					
5.211	-1 10-	1.lee	2.00	3.600	4.000	5.000
an inclusion of	and the part of the	WORLDWG: 0 WIRE-	2.691: 0	チャネル数:10 労ンパリ	いり直接数:10000Hz	

②フットスイッチから、1歩行周期(1動作分)を選択する。

1)「編集」メニューの「トリガ抽出」で、歩行動作開始点を抽出する。

「編集」メニューの「トリガ抽出」を選択します。

右のフットスイッチから、右足の筋電図の歩行動作開始点を検出します。左足については、右足の解析がすべて終わった後で、再度左のスイッチを用いて検出し直してください。

「トリガ抽出」タブ	宙出」タブ:
-----------	--------

▶リ万祉比条件 2 × 10万比小川	トリガ種類:	「ポストトリガ」
指出条件 パラメータ短度(1) トリガ後類(2) ポストトリガ マ	トリガチャネル:	右のフットスイッチ
トリガチャネル(Q): 10 Right Foot Switch <u>▼</u> トリガ特徴灯): 指出4月報(S): 1000 msec	トリガ時間:	0 msec
18出チャネル(人) 3 Left Quadricer A 4 Left Ham (Hamarine 5 Refit Al Colour A	抽出時間:	適当に 1000msec を入力します。
7 Reint Oue2Counders 6 Reint Hamrithemitting 9 Left Foot Switch	抽出チャネル:	右足の筋電図を選択します。
「 加重平均する(A) 「 抽出期回送表示する(Q) 「 「 isser 0.001seo 0.001seo OK キャンセル	加算平均はせず、	抽出範囲を表示します。

「トリガレベル」タブ:

フットスイッチの「中腹」と「山を越えた上部」の2つを指定します。

新しく作成されたウィンドウは使用しませんので、そのまま閉じてください。

FINALASI 27400 RED RTW 3770 REG NUD 2-400 912700 A8709 FIG LORS BERS V SMARL QCI	
	波形がたくさんあるウィンドウは使用しませんので、
	閉じてください。

この段階では、歩行動作開始点だけが合っている状態です。

目で確認いただき、ノイズやいらない部分があれば、選択範囲を右クリック→「選択区間の解除」を選んで、選 択区間から排除してください。

2)「編集」メニューの「区間の数値指定」で、歩行動作終了点を入力する。

「編集」メニューの「区間の数値指定」を選択します。

歩行周期のように、"今の終了点" = "次の開始点"である場合は、下のように設定していきます。 左のリストから選択区間2を選んで、その開始時刻をコピーします。

次に、左のリストから選択区間1を選んで、その終了時刻へペーストします。

選択区間の数値指定		和区間11な深くでから
道訳区間リスト 1 2 3 4	新過数で更 デサキネルの指定(2)- OLET TA(Tbialis A 1.Lett Sol(Soleus) 2.Lett Sol(Soleus) 選択区間の	秋区间「」を選んていら、 D終了時刻を色反転させて、Ctrl キーを押しながら「V」
5 6 7	3.Left Hamiltanstr 4.Right TA(Tballs 5.Right Sol(Soleu) 6.Right Quad(Quad	ます。すると、前項でコピーした値をペーストしました。
	▲ 選択区間の指定 ・時間で指定(1) ○ データ点数です	
	UUUU sec 1.127 sec (0.000sec - 8.913sec)	「変更」ボタンを押して、確定します。
<u>肖邶徐(D)</u>	新規登録(E) 変更(<u>A</u>)	
	OK キャンセル	

このように、

「選択区間 2」の開始時刻コピー→「選択区間 1」の終了時刻へペースト→「変更」ボタン 「選択区間 3」の開始時刻コピー→「選択区間 2」の終了時刻へペースト→「変更」ボタン 「選択区間 4」の開始時刻コピー→「選択区間 3」の終了時刻へペースト→「変更」ボタン …と繰り返して、すべての選択範囲の終了点を確定します。

終了時刻を目で見て確認いただき、特に最終区間については、必要があれば時刻を手入力してください。

③新しいウィンドウに張り付ける。

色反転した選択範囲が、波形上で横に連なった状態です。

ツールバーで「選択区間のコピー」ボタンを押したあとで、すぐに「新規ウィンドウに張りつけ」ボタンを押します。

新しくウィンドウができます。

良く見ると、一定のチャネル毎に、波形の長さが少しずつ違うことがわかります。この場合は、右足の筋電図が4チャネルあるので、4チャネルを1セットとして同じ長さの波形が並んでいます。

④リサンプリングしてデータ点数をそろえ、値をテキスト出力する。

1)同じ長さのチャネルについて、波形を全選択する。

ツールバーで「チャネルの全範囲」ボタンを押します。

波形の1セットを順番にクリックします。

この例の場合は、右足の筋電図が4チャネルあるので、4チャネルを1セットです。すなわち、上から4チャネル 分を一つづつクリックします。

補 BIMUTAS I – [解析データ Data2]	. 🗆 🛛
😸 ファイノレE) 編集(E) 表示(Y) ユマンド(C) 解析(A) 加工(P) ツール(M) ウインドウ(M) ヘルブ(H)	- 8 ×
$\blacksquare \blacksquare $	
波形の上でクリックすると角反転しま	:1
Right TA(Tibialis)	• •
Right Sol(Soleus) 0.0000- 2	
Right Quedi 0.0000 2	
Right Ham (Hamstri _ 10000-] function of the second of th	
Right TA(Tibialis 0.0000	_
Right Sol(Soleus)	_
Right Quad Quadri	
Right Ham (Hamster) 8,8888 - where we are not an an and an and the function of the second s	_

2)「加工」メニューの「整流」-「全波整流」を選択する。

🌆 BIMUTAS II - [Rawデータ 拮抗筋EMG01]	
🔡 ファイル(E) 編集(E) 表示(V) コマンド(C) 解析(A)	加工(P) ツール(M) ウインドウ(W) ヘルプ(H)
	7ィルタ 日回 回日回
	整流 ▶ 全波整流(F)
R前脛骨筋 -0.083 2.75-	基線算出 ▶ 半波整流(プラス)(P) データ反転(I) 半波整流(マイナス)(M)

新しいウィンドウができ、全波整流した状態になります。

THE BIMUTAS II - INTE	iデータ Data3]					
27-(1)(日 編集(日)	表示しい コマンド(Q)	解析(A) 加工(E) ツー	ルめ ウインド文型 へんけい	Ð		. 6
		S 🗖 🕞 🗟 🍕 🖉				
Right TA(Tiblalls 0 0.002 eV 0 -0	.10- .00- .11-		- und make	mohan man	~	
Right Sol(Soleur) 0.003 eV 0 -0	- 75= - 05 - - 02 - - 05 -				m	week to the este
Right QuedCluedri 0.00 0.003 0.0 NY 0.0 -0.0	400- 1003- 400-			unnukanan	Handrah Mandrid	mandel de
Right Hos(Hasstri 0.002 0.0 W 0.0 -0.0	101- 101- 101-	Marran		united and a second	kileston and which	mandroved
1,126 sec	0.000	0.280	0.400	0.610	4.600	1.010
マーク 潜時 面積	平均雄 ピーク 利	■季痛苦 ビックアップ	動値リスト			
			NHA: 0 選択チャネル教: 0	チャネル(新):4	サンプルグ用油設:100	DDHE

3)「加工」メニューの「リサンプリング」を選択して、データ点数をそろえる。

ツールバーで「全選択」ボタンを押し、波形を全選択します。

「加工」メニューの「リサンプリング」を選択します。

🦥 BIMUTAS II – [解析データ Data3]		
📙 ファイル(E) 編集(E) 表示(V) コマンド(C) 解析(A)	加工(P) ツール(M)	Ċ
	フィルタ 移動平均 整流 基線管出 ▶	-
Right TA(Tibialis 0.10- 0.010 0.10- mV 0.000- -0.10- -0.10-	データ反転(I) データ置換(P) リサンプリング(S)	

データ点数を、一番長い点数に合わせます。

一番長いデータに合わせて、且つキリの良い数字にすると、作業が楽になります。

この例では、余裕を持ってすべてのデータを2000点にリサンプリングします。

リサンプリング	
リサンプリング数値 - ・ データ点数(<u>N</u>) ○ 時間:	指定(1)
変更前データ点数変更後デー	一久点数
1128	2000
L	
ОК	キャンセル

変換後データ点数:データ長の長いものに合わせます

この例では2000点を入力していますが、実際のデータによって 数字を変えてください。

新しくウィンドウができます。

このウィンドウでは、データ点数が入力した点数になっているはずです。

再度、全範囲を選択してから「加工」メニューの「リサンプリング」をクリックして、データ点数が入力した値になったかどうか、かならず確認してください。

もし、点数が1点多いときは、リサンプリング点数を1点減らしてみてください。

4)「ファイル」メニューの「キッセイコムテック共通テキストファイル」を選択する。

ツールバーで「全選択」ボタンを押し、波形を全選択します。

	<u> </u>
王単四世を	湛択します。

「ファイル」メニューの「キッセイコムテック共通テキストファイル」-「選択範囲」を選択します。

	🦥 BIMUTAS II – [解析データ Data4]								
	ファイル(E)	編集(<u>E</u>)	表示(⊻)	コマンド(<u>C</u>)	解析(<u>A</u>)	加工(P)	ツール(<u>M</u>)	ウインドウ	
	開((<u>0</u>) 閉じる(<u>C</u>)	i			Ctrl+	ю 🛃	∞ ∿ -		
Rig	インポート エクスポー	·				•			
0 mV		存(<u>S</u>) けて保存(<u>A</u>	Ð		Ctrl+	•S	huna		
	キッセイコ	ムテック共通	デキストデ	ータファイル出ス	力(<u>T</u>)	• I	ドーカーソル区	.間(<u>B</u>)	
Rig O	ページ設定	定(G)				ì	璧択範囲(<u>R</u>)		

保存先を入力して、テキストファイルを作成します。

5)1試行毎にこの作業を繰り返します。

以上の1)~4)工程を繰り返して、1試行毎のテキストファイルを次々と作成します。

⑤表計算ソフトで、縦軸を加算平均し、横軸を100%に換算する。

全試行のテキストファイルを出力したことを確認します。

ファイル(E) 編集(E) 表示(y) 1	5気に入り(A) ワール(D) ヘルプ(H)				120
0 m · 0 · 1 /	秋東 🜔 7#14ダ 💷・				
FU2(0) 白信足				-	
A CONTRACT OF A	名前一	サイズ	1615	更新日時	1
ファイルとフォルダのタスク	Trinett troff on 1 KCT	40 KB	KCT 2rd &	2012/03/14 1851	
THE REAL PROPERTY AND INCOMENTS.	miright try01 re 2 KCT	40 KB	KCT 2rd.6	2012/03/14 1851	
MUCCARA BLANKAR	Tright try01 ne 3 KOT	40 KB	KOT 2p1.8	2012/03/14 1851	
🔁 2007#10-95 Web (2521074)	relight try01 re 48CT	40 KB	KCT 7P1 %	2012/03/14 1851	
😭 このフォルダを共有する	ttil right try02 re 1 KOT	40 KB	80T 2P1.6	2012/03/14 1856	
222	Tright try02 re 2 KCT	40 KB	NOT 7P15	2012/03/14 1856	
	Hiright try02 re 3 KOT	40 KB	KCT 7P1.6	2012/03/14 1855	
その他	Tright by02 re 4KOT	40 KB	KOT 7p4.6	2012/03/14 1956	
	Thright try03 rg 1 KOT	40 KB	NOT 7P1.6	2012/03/14 1857	
IF48	S Hright by03 re 2 KOT	40 KB	KOT 77-15	2012/03/14 1957	
	Tright \$100 re 3 KOT	40 KB	KOT 7#4.6	2012/03/14 19:57	
	Tririeht try03 re 4 KOT	40 KB	KOT 7p1.6	2012/03/14 1857	
	Elright try04 re 1 KCT	40 KB	KOT 77-1.6	2012/03/14 1857	
	ministration of an 2 KOT	40 KB	NOT 7r15	2012/03/14 10:57	
	ttil right try04 ne 3.KOT	40 KB	80T 2P1.6	2012/03/14 1857	
	miright try04 re 4 KOT	40 KB	KOT 2715	2012/03/14 1857	
	ministructure 1 KCT	40 KB	RCT 2+1.6	2012/03/14 1858	
	miright try05 re 2 KCT	40 KB	KCT 2r1.6	2012/03/14 1858	
	miright try05 re 3 KCT	40 KB	8CT 2r1.6	2012/03/14 1858	
	miniaht_try05_re_4.0CT	40 KB	RCT 2P1/6	2012/03/14 1858	
	gright try06 re 1 KCT	40 KB	KOT 7P1/6	2012/03/14 1858	
	Bright try06 ne 2 KCT	40 KB	NOT 7P1/6	2012/03/14 1858	
	TOXE #10506 re.3 KOT	40 KB	NOT 7P1%	2012/03/14 1858	
	Tright, \$506 rs. 4 KOT	40 KB	NOT 7P1%	2012/03/14 1858	
	Eright_try07_re_1.KOT	40 KB	NOT 7P-1/6	2012/03/14 1858	
	ministry07_re_2KOT	40 KB	NOT 7P-1.8	2012/03/14 1958	
	Tright try07 re 3.KOT	40 KB	BOT 7246	2012/03/14 1858	

表計算ソフト(今回は Excel を使用します)へ、チャネル毎に1つのシートにまとめます。

	A	В	С	D	E	F	G	Н	Ι	
1	<u>Right TA(T</u>	bialis Anter	rior)							
2										
3	msec	1 周期	2周期	3周期	4周期	5周期	6周期	7周期		
4	0	0.00228	0.00267	0.00038	0.0019	0.0019	0.00724	0.00762		
5	0.563782	0.00201	0.00288	0.00075	0.00048	0.00386	0.00566	0.00178		
6	1.127564	0.00345	0.00238	0.00073	0.00057	0.00342	0.00449	-0.00008		
7	1.691346	0.00517	0.0016	0.00074	0.001 69	0.00207	0.00355	0.00064		
8	2.255128	0.00488	0.001	0.00115	0.0036	0.00184	0.00257	0.00275		
9	2.818909	0.00274	0.00058	0.00306	0.00432	0.00177	0.001 62	0.00364		
10	3.382691	0.00365	0.00062	0.0061	0.00275	0.00126	0.00087	0.00247		
11	3.946473	0.00626	0.00294	0.0058	0.00214	0.00111	0.00087	0.00174		
4.0	4 54 0055	0.00004	0.00400	0.00007	0.0000	0.004.06	0.004.70	0.004.50		

先ずは、縦軸を加算平均します。

	A	В	С	D	E	F	G	Н	I	J	
1	Right TA(T	ibialis Anter	rior)								
2											
3	msec	1 周期	2周期	3周期	4周期	5周期	6周期	7周期			
-4	0	0.00228	0.00267	0.00038	0.0019	0.0019	0.00724	0.00762	=AVERAGE	(B4:H4)	
5	0.563782	0.00201	0.00288	0.00075	0.00048	0.00386	0.00566	0.00178			
6	1.127564	0.00345	0.00238	0.00073	0.00057	0.00342	0.00449	-0.00008			
7	1.691346	0.00517	0.0016	0.00074	0.001 69	0.00207	0.00355	0.00064			
8	0.0551.08	0.00488	0.001	0.00115	0.0036	0.001.84	0.00257	0.00275			

加算平均されました。

	A	В	С	D	E	F	G	Н	Ι	
1	Right TA(T	bialis Anter	rior)							
2										
З	mseic	1 周期	2周期	3周期	4周期	5周期	6周期	7周期	加算平均	
4	0	0.00228	0.00267	0.00038	0.0019	0.0019	0.00724	0.00762	0.003427	
5	0.563782	0.00201	0.00288	0.00075	0.00048	0.00386	0.00566	0.00178	0.002489	
6	1.127564	0.00345	0.00238	0.00073	0.00057	0.00342	0.00449	-0.00008	0.002137	
7	1.691346	0.00517	0.0016	0.00074	0.001 69	0.00207	0.00355	0.00064	0.002209	
8	2.255128	0.00488	0.001	0.00115	0.0036	0.00184	0.00257	0.00275	0.002541	
9	2.818909	0.00274	0.00058	0.00306	0.00432	0.00177	0.001 62	0.00364	0.002533	
10	3 382691	0.00365	0.00062	0.0061	0.00275	0.001.26	0.00087	0.00247	0.002531	

次に、横軸値を算出します。

A 列目をクリックしてから、右クリック→「挿入」を選択して、列を追加します。

再度	再度、同じ作業をして、2列分を追加します。							
	A	B C D						
1	Right 4	切り取り(工)						
2		1 3Ľ-(0)						
3	msec 😭	貼り付け(P)						
- 4		HST大部地して貼り付け(s)						
5	0.5637	NSIVE ANO CROMINION						
6	1.1275	挿入(1)						
7	1.6913	肖·『除(D)						
8	2.2551	数式と値のクリア(N)						

追加した片方の列には、連番で0,1,2,3,4,5…となるように番号を振っておきます。

	A	В	С	D	
1			Right TA(T	ibialis Anter	ic
2					
3			msec	1 周期	2
- 4		0	0	0.00228	
5		1	0.563782	0.00201	
6		2	1.127564	0.00345	
7		3	1.691346	0.00517	
8		4	2.255128	0.00488	
a		F	2 91 9909	0.00274	

隣の列には、100%の正規化ができるように横軸の値を作成します。

今回の例では、リサンプリング点数を2000点にしたので、B列×100%÷2000点を行いました。

	A	В	С	D	
1			Right TA(T	ibialis Anter	ior)
2					
3			msec	1 周期	2周
4	= <mark>B4</mark> *100/2	2000	0	0.00228	C
5		1	0.563782	0.00201	C
6		2	1.127564	0.00345	C
7		3	1.691346	0.00517	
8		4	2.255128	0.00488	
n		F	0.01.00.00	0.00274	C.

縦軸値と横軸値ができましたので、最後にグラフを書いて観察します。

3-1-28 動作単位で正規化する

脳波の解析

2-1) 帯域別に含有量・含有率を算出する

含有量を算出し、ある事象における帯域毎や部位毎の比較を行います。 また、含有率を算出し、別の被験者(対象)や別の事象と定性的な比較を行います。

含有量を使用した場合、対象により絶対値が異なるため、別の被験者(対象)や別の事象と定性的な 比較ができません。

< 操作の流れ > 脳波の生波形を表示する。 チャネル全体または一部を選択する。

FFT を行う。

- 1. 含有率・量の時系列変化を求める場合
- 2. 任意の範囲における含有率・量を求める場合

「コマンド」メニュー「帯域設定」を選択する。 含有率または含有量を算出する。 タブ領域内の含有率または含有量をコピーし、表計算ソフトへ貼り付ける。

脳波の生波形を表示する。

I RIMUTAST	- IRamit-4	samplel			21	
277(NO) 1	REQ REV	日 172月1日 日本	所(る) 加工(12) ウー/	149 012908	0 15700 -	$\sigma_{\rm X}$
694	和自由		5 5 m			
15 女 23才	8ヶ月					
<u>at</u> -1.674 uvelt	180,00- 80,00- 40,00- 20,00- -20,00- -40,00- -40,00- -40,00- -100,00- -100,00-	Woonwood	Warnwa	www.	ywillwilwadw	· W
11.270 SMC		5,000	7.600	2	10,800	
2-7 Min	1000 10000 【祝子ャネル数: (* レール mime チャネル数11	ex レートマーマー 6 サンテルク思	DABAT 200.0Hz	1	

チャネル全体または一部を選択する。

ツールバーの選択範囲モードを選び、波形上で選択範囲を設定します。

例:チャネル全体を選択範囲とする場合

ツールバーで「チャネルの全範囲」ボタンを押します。

波形上でクリックすると、そのチャネル全体が選択されます。

■ 771/A(E) 編集(E) ■ ■ ● ■ ● ■ ■ ■ 15 支 23才 8ヶ月	0 470 0770 0150 00 0150 00 010 00 010 00 00 00 00 00 00 00 00 00 00 00 00 00	at (2)764 (10 -49 - <u>800-</u> 1	
01 -1.874 uvelt	60,00- 60,00- 20,00- 0,00- -0,00-	nunnhu	nlumulaury	orly hypothesisters,
11.270	5.000		7.500	18.000

FFT を行う。

1. 含有率・量の時系列変化を求める場合

「解析」メニューの「周波数解析」-「時系列解析」から「FFT」を選択します。

🏧 BIMUTAS II – [Rawデータ sample]		
📑 ファイル(E) 編集(E) 表示(V) コマンド(Q)	解析(A) 加工(P)	ツール(M) ウインドウ(W) ヘルプ(H) -
	周波数解析 積分	FFT(<u>F</u>) MEM(<u>M</u>)
KS 女 23才 0ヶ月	微分 百己相關(A)	AR(<u>A</u>)
01 -4.158 100.00- 80.00-	相互相関(<u>N</u>) コレニレンフ(4)	時系列解析 → FFT(<u>F</u>)

「時系列解析(FFT)」ダイアログの設定を行います。

MARKEUTD		🚆 平均回数:	ダイアログ上の"1エポックデータ時間"が、
		FFT ポイント数: 窓関数: スペクトル単位:	解析する分析時間になるように設定します。 128~1024が一般的です。 ハミングまたはハニングが一般的です。 パワー
#FELEF-34日 2005.00 mm 12ボックデー34日 1056.00 mm	選択範囲 *****	・ 時間約 90sec の内、先頭	頭から約 10sec 毎に FFT されます。

注: 平均回数と FFT ポイント数の設定方法 脳波の場合、一般的に FFT ポイント数は 128~1024 点に設定します。 平均回数はダイアログ上の"1エポックデータ時間"が、解析する分析時間になるように設定します。 詳しくは、「4-1) FFT ポイント数とサンプリング周波数」 「4-2) FFT ポイント数と平均回数の関係」を御覧下さい。

FFT 結果が新しいウィンドウに表示されます。

- REMUTAST - 1	FFT(/(ワー) Data2) D 単元() コマンド()) ##68) %-%8	0428000 A870	
13 g 237 (+)				
10.2403ec 20.403ec 30.720sec 40.900sec 51.200sec				
61,440aec 71,680aec	100:00- n m-			
100.000	0.000	20,808	25,000	90,000
マーク 含有率 含	和登 Median Mean	ピーク ピックアッ	J ビーク難波数 スペ!	クトル価格 標準・
·**ル献18 分解論1	139Hz FFT#4>A	秋:512 加算 目	Bats4 2000Mts/NEC-0	

2. 任意の範囲における含有率・量を計測する場合

「解析」メニューの「周波数解析」から「FFT」を選択する。

🌆 BIMUTAS	Ⅱ - [解	析データ	Data2]				
🔡 ファイル(E)	編集(E)	表示♡	コマンド(<u>C</u>)	解析(<u>A</u>)	加工(12)	ツール(M)	ウインドウ(い
2 D A	XB			周波数	解析	▶ FF1	r(E)
	00 -			積分		ME	M(M).

「FFT」ダイアログの設定を行います。

周波鼓扇桥(FFT) 🔀	区間の指定方法:	脳波解析では、 512 ~ 1024 点に
解析の設定 区間の構定方法① ○ 平均回数(A) ○ 平均回数(A) ○ FFTポイント数(D) 512 ご 文明数(M) バラメータ展歴(D) ・ ・ ・ ・ ・ ・ ・ ・ ・	窓関数: スペクトル単位:	設定するのが一般的です。 ハミングまたはハニングが一般的です。 パワー
The second seco	点数 2001 点の内、 先	頭 512x3=1536 点分が FFT されます。

FFT 結果が新しいウィンドウに表示されます。

● REMUTASE ● 7+1AE 編 ■ 日本 3 15 文 237 1	- IFFT(70) 単位 単示位 中 由 日 ヶ月	-) Data2)) 370FQ 	566) 7-5 5	ଷ ୨୯୦୧୦ଷ <u>୧୦/୦/–</u> ୮୮୮	~#769 21 <u>21 81 80</u>	- 0 X
0.011 9.011 uveit'2	18.00- 12.00- 8.00- 4.00- 0.00-	Im				
99,609 H2	1	.301	10,000	45.000		0.000
マーク 含有率	含有量 Media	n Mean i	ビーク ビックア	ップ ビーク距離	スペクトル面積	1 22 4 1
Fy2.1.00:1 分解的	8:039Hz	FFT#{>Hg	t:512 .mi	ilikt:3 2300	たいとう	1

「コマンド」メニュー「帯域設定」を選択する。

設定したい帯域名称と、周波数帯域を入力し「OK」ボタンを押します。デフォルトでは、脳波の6帯域が設定されています。

莱利 群 (1)-	正 出			帯域	数を	変更して	から名称	と周波数	ぬを入力	」します。
	带绒名	# 1	dia .			带绒色	5			
帯城1 (j)	delta	2.000 Hz I	ULE T	4.000	他 未満	-				
帯城2 ②	theta	4.000 Hz	ILE	8.000	七 未満					
帯旭3 ③	alpha	8.000 Hz I	ULE T	13.000	也 未満					
帯城4(4)	beta	13.000 Hz J	U.L.	200.00	12 未満					
帯対5 ⑤)	betal.	12.000 Hz	ULL T	20,000	七 未満	100 V				
茶城6 (0)	Deta2	20.000 Hz	ULL T	30.008	Hz 未満	4				
帯紙7(0)	-	Hz	UL T		Hz 未満	-				
带城8 (3)		He	ULE T	-	H:未満	2				
業城9 (9)		Hz	ULE T	-	12 未満	-				
₩10 (1)		Hel	KLE T	-	七 未満					

含有率または含有量を算出する。

「コマンド」メニューの「含有率」または「含有量」を選択します。

A BIMUTAS	II – [FF	רפאאד) Data2]		
📙 ファイル(E)	編集(E)	表示⊙	<u>コマンド(©)</u>	解析(<u>A</u>)	(<u>M</u>
	よ国			6	

含有率の場合計算方法を指定し、「OK」ボタンを押します。

分布中	→ → → → → → → → → → → → → → → → → → →
○ 那场の総和(2) ○ 任意域の総和(A) □ H2 - □ H2	
OK ++>セル	

タブ領域を拡大して、計測データを表示させます。

タブ領域が広げられ、含有率が計測されていることがわかります。

タブ領域内の含有率または含有量をコピーし、表計算ソフトへ貼り付ける。 タブ領域内で右クリックして、「すべて選択」を選びます。

タブ領域内が選択された(色反転している)ことを確認した後で、再びタブ領域内で右クリックして、「コピー」を選びます。

表計算ソフト(例:Excel)を起動します。

🔀 Microsoft Excel – Book1								
8	ファイル(<u>E</u>) 編	諜(E) 表 示	⊻ 挿入Φ	(回)た書	ツール① デ			
	🖻 🔚 🗠	📲 🎽 MS P	ゴシック	• 11 •	в <i>I</i> <u>U</u>			
	A1 🔻 fx							
	A	В	С	D	E			
1								
2								

表計算ソフト上で「貼り付け」を選びます。

🔀 M	🔀 Microsoft Excel – Book1					
	ファイル(圧)	編	集(E) 表示(⊻) 挿入(I) 書式(0)		
D	🛩 🖬 🕨	ю	元に戻せません(U)	Otrl+Z		
	A1	U	繰り返しできません(<u>R</u>)	Ctrl+Y		
	A	*	切り取り(T)	Ctrl+X		
1			⊐Ľ−©)	Ctrl+C		
2		m.	Office カリップポード(P)			
3		-	Once 99977 - [AD/			
4		e	貼り付け(P)	Ctrl+V		
5			TET & BERGH	(2)		

含有率が表計算ソフトに表示されました。グラフ等の加工を行うことができます。

🔀 M	🔀 Microsoft Excel - Book1								
8	ファイル(<u>F</u>) 編集	(E) 表示(⊻) 挿.	入邸 書式(2)	ツール(工) データ	(型) ウィンドウ₩)	\sim			
	🚔 🔚 🗠 + ?	MS Pゴシック	• 11 •	B <i>I</i> <u>U</u> ≣	= = = 9	%			
	H2								
	A	В	С	D	E				
1		delta	theta	alpha	beta				
2	01	6.731	24.378	63.861	5.029				

BIMUTASII を使用した解析手順

脳波の解析

2-2) 2波形を比較する

2つの事象や、2つの波形の変化を見やすいようにグラフ化します。

脳波の2波形を比較するためには、2つの手段があります。

- 1. それぞれの波形における周波数成分の変化を見る場合……………………………3-2-9
- 2.2 つの波形における周波数成分の差を見る場合……………………………………………………………3-2-14

1. それぞれの波形における周波数成分の変化を見る場合

脳波の2波形について、それぞれ含有率を計測し、その値を比較します。

<操作の流れ>

- ↓ ①脳波の生波形を表示する。
- ↓ ②波形の一部を、2箇所選択する。
- ↓ ③「解析」メニュー「周波数解析」から「FFT」を選択する。
- ↓ ④「コマンド」メニュー「帯域設定」を選択する。
- ↓ ⑤含有率を算出する。 ⑥タブ領域内の含有率をコピーし、表計算ソフトへ貼り付ける。

①脳波の生波形を表示する。

②波形の一部を、2箇所選択する。

ツールバーの選択範囲モードを選び、波形上で選択範囲を設定します。

例:2部位における、同時刻で同じ時間幅を選択範囲とする場合 ツールバーで「任意幅の区間の全チャネル」ボタンを押します。

	7
任意幅区間の全チャネル	2

波形上でドラッグすると、2チャネル分の選択範囲が表示されます。

WINDERSING ■ ■ ファイルビ ● ■ ファイルビ ● ● <th>×</th>	×
	<u> </u>
01 -0.054 wolt 20.00- wolt 40.00- -0.00- -0.00- -0.00- -0.00- -0.00- -0.00- -0.00-	する範囲の先頭にマウスを合わせ、
10.120 sec ユーク issues 面板 正地体 レーク 博物画書 レークスーー 地体 17.500 違批区開散: 0 選択チャネル数: 0 チャネル数:16 サンプリング周波数:200.0hz	タンを押しながら右にドラッグします。

③「解析」メニュー「周波数解析」から「FFT」を選択する。

🦥 BIMUTAS II - [解析データ Data2]							
📙 ファイル(E)	編集(<u>E</u>)	表示♡	בדטאי <u>(C</u>)	解析(<u>A</u>)	加工(2)	ツール(<u>M</u>)	ウインドウ()
	X 🗈	e ita i		周波数	解析	▶ FF1	r(E)
				積分		🕨 ME	M(M)

「FFT」ダイアログの設定を行います。

周波鼓解析(FFT)	区間の指定方法:	脳波解析では、512~1024 点に
解析の設定 区間の指定方法① ○ 平均回数(A) 3 ・ FFTポイント数(P) 512 ▼ スペクトル単位(U): パワー ▼ 「パンドスペクトル(B) 1000000 Hz	窓関数: スペクトル単位:	設定するのが一般的です。 ハミングまたはハニングが一般的です。 パワー
周波数分解能: 0.391 Hz 0 2001 点 選択範囲の,	点数 2001 点の内、先	頭 512x3=1536 点分が FFT されます。
512点×3回 キャンセル		

2波形分のFFT 結果が新しいウィンドウに表示されます。

🍇 BIMUTASI - [FFT(パワー) Data2]	×
📑 ファイル(E) 編集(E) 表示(V) コマンド(C) 解析(A) ツール(M) ウインドウ(W) ヘルブ(H) 🛛 🔤 🗗	×
ses energies of the set of the se	
KS 女 23才 0ヶ月	
Fe1 0.015 wolt*2 2.00 M 01 0.013 wolt*2 0.00 20.000 0.000 M	
99.609 0.000 30.000 60.000 90.000	+
Hz	
マーク 含有率 含有量 Median Mean ビーク ビックアップ ビーク周波数 スペクトル面積 標準 •	•
チャネル数:2 分解能:0.39Hz FFTポイント数:512 加算回数:2 窓関数:ハミング	

④「コマンド」メニュー「帯域設定」を選択する。

設定したい帯域名称と、周波数帯域を入力し「OK」ボタンを押します。初期値は、脳波の6帯域が設定されています。

帯域設定					
帯域数(<u>N</u>):	4		帯域数を	変更して	から名称と周波数を入力します。
	帯域名	帯域値		帯域色	
帯域1 (1)	delta	2.000 Hz 以上	4.000 Hz 未満		
帯域2(2)	theta	4.000 Hz 以上	8.000 Hz 未満	· ·	
帯域3 ③	alpha	8.000 Hz 以上	13.000 Hz 未満	-	
帯域4 (4)	beta	13.000 Hz 以上	30.00C Hz 未満	· ·	
帯域5(5)	beta1	13.000 Hz 以上	20.000 Hz 未満	· ·	
帯域6(6)	beta2	20.000 Hz 以上	30.000 Hz 未満		
帯域7(7)		Hz 以上 [Hz 未満		
帯域8(8)		Hz 以上 [Hz 未満		
帯域9(9)		Hz 以上 [
帯域10 @)		Hz 以上 [
		OK + 5	1 H211		

⑤含有率を算出する。

「コマンド」メニュー「含有率」または「含有量」を選択します。

🦥 BIMUTASI – [FFT(パワー) Data2]						
📙 ファイル(E)	編集(E)	表示♡)	<u>コマンド(©)</u>	解析(<u>A</u>)	ש–µ(<u>M</u>	
	ХÞ		含有率 含有量	\mathbf{k}		

含有率の場合計算方法を指定します。

含有率	
 分母: ○ 滞域の総和(Z) 	帯域の総和で行うのが一般的です。
○ 任意域の総和(<u>A</u>)	
Hz - Hz	
OK キャンセル	

タブ領域を拡大して、計測データを表示させます。

タブ領域が広げられ、含有率が2波形分計測されていることがわかります。

⑥タブ領域内の含有率をコピーし、表計算ソフトへ貼り付ける。

タブ領域内で右クリックして、「すべて選択」を選びます。

タブ領域内が選択された(色反転している)ことを確認した後で、再びタブ領域内で右クリックして、「コピー」を選びます。

マーク 含有率 含有	盲量 Median Mean		ビックアップ
Fp1 01	delta 元に戻す(U)	theta	alpi 36.6: 60.0
	切り取り(T) コピー(Q) 貼り付け(人)		
▲ チャネル数:2 分解能:0	前はの すべて選択(A) 右から左(こ読む(R)		加算回数

表計算ソフト(例:Excel)を起動します。

🔀 М	icrosoft Ex	cel – Book1			
	ファイル(E) 新	■集(E) 表示	☑ 挿入璽	(の)た客	ツール(T) デ
Dı	🛎 🔚 🗠	- 🐥 MS P	ゴシック	• 11 •]	B <i>I</i> <u>U</u>
	A1	•	f _x		
	А	В	С	D	E
1]			
2					

表計算ソフト上で「貼り付け」を選びます。

🔀 Microsoft Excel – Book1				
	ファイル(E)	編	集(E) 表示(⊻) 挿入((<u>(</u>) 注告 〔
	🛩 🖪 🕨	K)	元に戻せません(U)	Otrl+Z
	A1	Q	繰り返しできません(<u>R</u>)	Ctrl+Y
	A	Ж	切り取り(工)	Ctrl+X
1		B)	⊐Ľ−©)	Ctrl+C
2		¢,	Office クリップボード(<u>B</u>)	
4		2	貼り付け(P) _N	Ctrl+V
5			HER & BERGE	(2)

2波形のそれぞれの含有率が表計算ソフトに表示されました。グラフ等の加工を行うことができます。

🔀 M	icrosoft Excel	– Book1							
8	ファイル(E) 編集	(E) 表示(⊻)	挿入仰	書式(())	<u>س</u> -	-N(I)	データ(<u>D</u>)) ウィンドウ()	N) A.
	🚔 🔚 🗠 - ?	MS Pゴシ:	ック	- 11 -	B	ΙU			9 %
	I2	▼ f _x							
	A	В		С		C)	E	
1		0	lelta	the	ta		alpha	be	eta
2	Fp1	2	2.077	23.	32		36.62	17.9	84
3	01	1	0.783	22.5	59	6	50.0 1 8	6.	.64
Α									

2.2 つの波形における周波数成分の差を見る場合

脳波の2波形にそれぞれ含まれる周波数成分の差を表示する解析方法です。

く操作の流れ>

- ↓ ①脳波の生波形を表示する。
- ↓ ②波形の一部を、2箇所選択する。
- ↓ ③コヒーレンスを算出する。

①脳波の生波形を表示する。

②波形の一部を、2箇所選択する。

ツールバーの選択範囲モードを選び、波形を色反転させ選択範囲を設定します。

注: 2箇所の選択範囲は、同じ時間幅(同じデータ点数)である必要があります。

例:2部位における、同時刻で同じ時間幅を選択範囲とする場合

ツールバーで「任意幅区間の全チャネル」ボタンを押します。

波形上でドラッグすると、2チャネル分の選択範囲が表示されます。

🎆 BIMUTASI - [Rawデータ sample]	
🔡 ファイル(E) 編集(E) 表示(V) コマンド(C) 解析(A) 加工(P) ツール(M) ウインドウ(W) ヘル	プ(H) _ a ×
KS 女 28才 0ヶ月	
$\frac{F_{\rm P1}}{1.878}$ 20.00-	
uvolt 0.00- MANIAYA MALAARAA LAAPAANIN MINAAARAAA	k that which
-10.00- "ILLA F A AN ALM AN A A AN ALM A A A A A A A A A A A A A A A A A A	Man Aur A
-20.00-	
-0.054 40.00-	
0.00 MANNAMAN MANNAMANAN MANNAMANANANANANANA	
-20.00	解析したい範囲の先頭にマウスを合わせ、
10.120	左ボタンを押しながら右にドラッグします。
選択区間数: 0 選択チャネル数: 0 チャネル数:16 サンプリング周波数:200.0Hz	

③コヒーレンスを算出する。

「解析」メニューの「コヒーレンス」を選択します。

🌆 BIMUTAS II	- [Rawデータ	sample]			
💾 ファイル(E) 編	潗(E) 表示(⊻)	בדאג <u>ה</u>	解析(<u>A</u>)	加工(12)	ツーノ
<mark>≽】圖圖</mark> 為 KS 女 23才(隆電福		周波数 積分 微分 自己相	解析 閏(A))))
<u>Fp1</u> -1.643 uvolt	20.00- 10.00- 0.00-	ı MMMum	相互相 コヒーレ クロスス・	開(N) ンス(H) ペクトル(C).	

「コヒーレンス」ダイアログを設定し、「OK」ボタンを押します。

注: コヒーレンスを行うために、平均回数を2回以上に設定する必要があります。

値が1であれば、その周波数において2波形が同じであることを示します。

同じ2波	形でコヒーレンスを求めた場合	違う2波	8形でコヒーレンスを求めた場合
<u>01</u> -18.337 uvolt	30.00- 0.00- -30.00-	<u>Fp1</u> -1.643 uvolt	20.00- 0.00- -20.00-
<u>01</u> -13.337 uvolt	39.00- 9.00- -39.00-	<u>01</u> -13.887 uvolt	30.00- 0.00- -30.00-
80 805	76.000 78.000 80.000	80.805	76.000 78.000 80.000
	\square		\square
🏦 BIMUTAS II	- [18-423 Data2]	👫 BIMUTAS I	- [18-127 Data2]
ファイル(E) 編	果む 表示(い コマンド(い) 解析(の) ツール(的) ウインドウ(い) ヘルブ(い) ニ パ ×	■ 77イル(E) 編	実的 表示の コマンドの 解析の ツールの ウインドウの ヘルプロ ニ き ×
NO 10 108 0	78	NO S LOA 0	78
1.000	1.00- 0.00- 0.40- 0.40- 0.40- 0.40- 0.20-	<u>Fp1-01</u> 0.334	
99.609 Hz	000.00 000.00 000.00	100.000 Hz	0.000 30.000 60.000 \$0.000
マーク ピックア	ップ 数通リスト	マーク ピックア	ップ 数値リスト
道訳区開設:0 道	祝チャネル数 分解能:039Hz 解析データ点数:612 加賀回数:2 。	温泉区間時:0温	報チャネル数 分解性:039H: 解析データ点数:512 加強国数:2

BIMUTASII を使用した解析手順

<u>脳波の解析</u>

2-3) トリガ信号から脳波を抽出する(誘発脳波)

トリガ信号を基にして、そのトリガから前後の固定幅区間で脳波を抽出します。 抽出した波形を加算平均することで、背景脳波を除いた事象に関する特異な波形を取り出すことが できます。

< 操作の流れ >

脳波とトリガ信号の生波形を、1 つのウィンドウ内に表示する。 選択範囲を消去する。 「編集」メニュー「トリガ抽出」を選択する。 新しくできたウィンドウを閉じる。 生波形上でアーチファクトを除く。 加算平均する。 加算波形に対して、潜時を計測する。

脳波とトリガ信号の生波形を、1 つのウィンドウ内に表示する。

選択範囲を消去する。

ツールバーで「全ての選択を解除します。」ボタンを押します。

「編集」メニュー「トリガ抽出」を選択する。

「トリガ抽出条件」ダイアログの「トリガ抽出」タブをクリックして前面に表示させ、以下の通りに設定します。

and survey				
ISTATI				1155-3種種目
刊/力種類(2)	1909Ut	1		
1059+94-0	2 1.00	÷.		
HUSING .	1700	mant		
REPART	1400	esec.		
8019+24-0	ARCH			
1" h#Ŧ#156	rso			
U MANNESS				-
P MAREEAN	1.10			
u menineni Iriger	1.10			

トリガ種類:	一般的にはプリトリガを使用します。
トリガチャネル	↓:トリガ信号のチャネルを選択します。
トリガ時間:	トリガ信号までの時間
	(ダイアログ内での緑色部分)
抽出時間:	抽出する全長時間
	(ダイアログ内でのピンク色部分)
抽出チャネル	☆複数選択することができます。

「トリガレベル」タブをクリックして前面に表示させます。トリガレベル(2本の赤線)を、トリガ信号をはさむように 設定します。

抽出された結果が新しいウィンドウに表示されます。(このウィンドウは次頁 項で閉じてしまい、使用しません。)

新しくできたウィンドウを閉じる。

生波形上でアーチファクトを除く。

生波形上の選択された範囲(色反転している部分)は、トリガ信号から抽出された波形です。 選択された部分を順に見て、アーチファクトがあった場合は選択を解除します。

注: 一度解除した区間を、再度選択区間に設定することはできません。

アーチファクトを含む選択された範囲上にマウスを合わせ、右クリックして「選択区間の解除」を行います。

加算平均する。

「編集」メニュー「加算平均」から「同名チャネル毎」を選択します。

新しいウィンドウに加算された波形が表示されます。

加算波形に対して、潜時を計測する。

「コマンド」メニューの「ピーク値検出」から「バーカーソル区間」を選択します。

🌆 BIMUTAS II	- [解析]	データう	デモデータ(言	ŧ発 脳 波	P300-	R)]	
📙 ファイル(E) 🗿	幕(⊑) ∌	₺₸৶	<u>コマンド©</u>)	解析(<u>A</u>)	加工(12)	ツール(<u>M</u>)	ウインドウし
	6 🖻 💼		マーク 潜時		•	≻ ∿ -	
KISSEI TARO 특	男 31才	0ヶ月	区間面積 平均値				
<u>Cz</u> 1.519 μV	25.0)0-)0-	ピーク値検 標準偏差	出		バーカーソル マーク区間(又間(<u>C)</u> g

例: P300 を見つけるため、250msec から 350msec までのピークを検出する場合

250msec にマウスを合わせ左ボタンを押し、ベースラインを設定します。

■ BIMUTASI - (解析データデモデータ(認知言語PS00-R))
■ フィイルロ 編集の 表示の コマンドロ 解析後 加工の ラールゆ ウインヤウゆ へんプロ KISSEI TARD 99, 31,7 0+ 19 25.00-20.00-15.00-10.00-5.00--20.754 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -00 m 250msec であることを確認してマウスの左ボタンを押すと、 0.00 250.000 ベースカーソル(Bと書かれた赤線)が表示されます。 - ク 潜時 | 茜穂 | 平均道 | ビーク | 標準編巻 | ビッ 保护区間時: 0 保沢チャネル研: 0 チャネル数:3 サンプバンク取決時:1000.0Hz 350msec にマウスを合わせ左ボタンを押すと、ピークが検出されます。 ■ BIMUTASI - [展長データブモデータ(画発層波P300-R)] 🚼 ファイルビ 編集の 表示(の コマンドロ) 解析(の 加工化 ツール(の ウインドウ(の へルナい) KISSEI TARO 99 817 04 19 -18,355 30,00 20.00 10.00-0.00--10.00-350msec であることを確認して -20,00--30.00-マウスの左ボタンを押すと、 1.60 350.000 検出されたピーク上下の矢印が表示されます。 ク 潜時 | 面積 | 平均値 ピーク 標準偏差 ピックアップ 数値リスト| サンテアンク認識額:1000.0 確約回應時: 0 運程チャネル数: 0 チャネル数:3 タブ領域を拡大して、計測データを表示させます。 ■ BIMUTAS I - (解析データ デモデータ(画発層波P300-R)] 🚼 ファイルゼ 編集型 表示(2) コマンドロ 解析(3) 加工ゼ ツール(9) ウインドウ(3) へんけい -5.724 30,00 20,00 10.00 0,00-10.00 -20,00 この位置にマウスをあわせると、カーソルが 〓に変化します。 -30,00 そのまま左ボタンを押しながら、上に引き上げます。 ピーク 標準痛差 ピックアップ 数遣リスト 的面積 甲均值 確認に開始: 0 違訳チャネル材: 0 チャネル基注:3 サンテアンク認識数:1000.0Hz タブ領域が広げられ、上下ピークの値が計測されていることがわかります。 BIMUTASE - (解析データブモデータ(画発層波P300-R)) 🚼 ファイルビ 編集(図 表示(ジ コマンド(ジ 解析(必 加工(ツ ウール(5) 042-80080 6-8200 -18.121 0.00-0,000 255,660 500,000 354,000 4 マーク 潜時 | 画様 | 平均値 ビーク 標準逼差 | ビ (251,000mtec - 353,000mtec) 検出されたピークの値が表示されています。 C1 808C, #V 353,000 -16,238 285,000 -29,780 -32,000 この場合、Lower-Time である 285msec が潜時になります。 Upper-Value Lower-Time Lower-Value 時間差 確認認識論: 0 確認チャネル教: 0 チャネル教:3 サンクアンク期決計:1000.0H

トリガ信号から脳波を抽出する(誘発脳波) 3-2-21

BIMUTASII を使用した解析手順

心電図・脈波や呼吸の解析

3-1) RR 間隔 または Peak to Peak 間隔 を表示する

波形のピークを検出し、表示します。

ピーク位置をそのまま表示する方法と、ピークとピークの間隔をスプライン補間して、時系列で表示する2つの方法があります。

< 操作の流れ > 心電図・脈波や呼吸の生波形を表示する。 解析する区間を選択する。 心拍の揺らぎを除去する。

> R 波、脈波や呼吸の Peak を検出する。 1.ピーク位置をそのまま表示する場合 [間隔テキスト] 2.時系列表示する場合 [間隔トレンド]

心電・脈波または呼吸の生波形を表示する。

解析する区間を選択する。

ツールバーの選択範囲モードを選び、選択範囲を設定します。

例:チャネル全体を選択範囲とする場合

ツールバーで「チャネルの全範囲」ボタンを押します。

波形上でクリックすると、そのチャネル全体が選択されます。

心拍の揺らぎを除去する。

「解析」メニューの「微分」から「差分」を選択します。

🌆 BIMUTAS II - [Rawデータ 30min ECG]	
🔡 ファイル(E) 編集(E) 表示(V) コマンド(Q)	解析(A) 加工(P)	<u>ッ</u> ール(<u>M</u>) ウインド
	周波数解析 積分	<u>↓ — ⊞ ⊒</u>
Hanako Kissei 女 31才 6ヶ月 2002-05-29 コンントはスレーナーた	微分	▶ 微分(_)
14ECG 3 00- 1	自己相関(<u>A</u>) 相互相関(N)…	差分区

新しいウィンドウに微分された波形が表示されます。 元の波形とは異なりますが、ピーク間隔は元の波形と同じです。

注:心拍の揺らぎの除去

この処理は心拍波形にゆらぎがある場合に行って下さい。

ゆらぎがなく、 項のピーク検索を用いて R 波または Peak を拾ってくることができる場合には、必要ありません。

R 波、脈波や呼吸の Peak を検出する。

ツールバーの「全範囲を選択します。」ボタンを押します。

「解析」メニューの「ピーク検索」を選択します。

1. ピーク位置をそのまま表示する場合 [間隔テキスト]

「ピーク検索」ダイアログの「詳細設定」タブをクリックし前面に表示させ、以下の様に設定します。

HERE INTER INTERIOR		-バラメータ順豊化
★新デー3 ★新空間©: 21集チャキル©: 114000 3 点のままでかまいません	解析の設定 解析種類(A) 平消化療分点数0.0	間間高742) 同一点 ロ - 9999 留計を入力して下さい
0のままでかまし	・ Fasterno	(下向唐代3)(0) [0] nsec

解析種類:"間隔テキスト"を必ず選択してください。

「ピーク検索」ダイアログの「閾値」タブをクリックし前面に表示させ、全てのピークが赤線を越えるように設定しま

3-3-4 RR 間隔を表示する

「OK」ボタンを押すと、新しいウィンドウに RR 間隔テキストが表示されます。

注: 間隔テキストについて 間隔テキストデータは、ファイルとして保存することができません。ピーク位置を保存するには、「心電・脈 波や呼吸の解析 3-2) RR 間隔または Peak to Peak 間隔をテキスト出力する」を御覧ください。 2. 時系列表示する場合 [間隔トレンド]

「ピーク検索」ダイアログの「詳細設定」タブをクリックして前面に表示させ、次の様に設定します。

「ピーク検索」ダイアログの「閾値」タブをクリックし前面に表示させ、全てのピークが赤線を越える様に設定しま

「OK」ボタンを押すと、以下の「サンプリング周波数」ダイアログが表示されます。

サンプリング	周波数	
周波数(<u>F</u>):	Hz	パラメータ履歴(出)
	ОК	キャンセル

RR 間隔の平均値を周波数に換算したものが、初期値として表示されます。次項 「周波数解析を行う。」のために、一定の数値を入力する必要があります(とトの心電図では、一般的にとト安静時における RR 間隔の平均的な値である 1.2Hz ほどを入力することが多い)。

注:サンプリング周波数の設定方法
複数の被験者データに対して一つ一つを解析すると、最後に現れるサンプリング周波数は必ず違う
値が表示されます(理由:被験者ごとに平均 RR 間隔が異なるため)。 FFT を行う際に FFT ポイント数
を揃えても、FFT を行う範囲(分析時間)が被験者毎に異なってしまい、データを比較できなくなって
しまいます。
<u>最終的にデータ値を被験者毎または異なる事象毎に比較するには、「サンプリング周波数」ダ</u>
イアログに一定の値を入力する必要があります。

「サンプリング周波数」ダイアログにて「OK」ボタンを押すと、新しいウィンドウに RR 間隔トレンドが表示されま

BE BIN OT AS IL - 12	ビータ株(新聞)-レッド) Data2)	
		18
10000000000000000000000000000000000000		
14505 1822.842 111 114 114 114 114 114 114 114 114 1	mer way way way way	nn

<u>心電図・脈波や呼吸の解析</u>

3-2) RR 間隔 または Peak to Peak 間隔 をテキスト出力する

波形のピークを検出し、その間隔を時系列で表示した後で、テキスト出力を行います。 テキスト出力することで、表計算ソフト上での加工や、他ソフトへの読込が可能になります。

以下の2つの表示では、それぞれテキスト出力する方法が異なります。

- 1. ピークをそのまま表示している場合 [間隔テキスト]……………………………………………………………3-3-9
- 2. ピークを時系列で表示している場合 [間隔トレンド]…………………………………………………………………3-3-12
- 1. ピークをそのまま表示している場合 [間隔テキスト]

< 操作の流れ > RR 間隔 または Peak to Peak 間隔を表示する。 タブ領域のピークリストを確認する。 タブ領域内を選択し、コピーする。 表計算ソフト上で貼り付ける。

RR 間隔 または Peak to Peak 間隔を表示する。

「心電・脈波や呼吸の解析 3-1) RR 間隔または Peak to Peak 間隔を表示する」の手順に従い、下図のように間隔

テキストを表示させます。

タブ領域のピークリストを確認する。

タブ領域を拡大して、ピークリストを表示させます。

RR 間隔をテキスト出力する 3-3-9

右端のスクロールを最上段まで押し上げます。

EMUTASI - ビーク検索(部局5大大) Date2) E ■ 2 7/かど 単単心 あ示心 コマンドロ 解析法 加工の クールダ ウインドウ ヘルフリ - 5 ×	
2000.05.28 コメント挿入しました。 14605	
-8.295 0.00-	スクロールバーにマウスを合わせ、
28.351 28.000 28.000 30.000	左ボタンを押しながら
ビークリスト マーク 瀬崎 (ビックアップ)	最上段まで押し上げます。
· 编校区開始: 0 编校子+2.6数: 0 平:余化微分点数: 3 化一均量块:上向终 1488: 228	

ピークリストが作成されていることを確認できます。

〒BIMUTASIE - Iピーク検索	(間隔7キスト) Data2]			
27イル(1) 編集(1) 表示(1)	コマンドロ)解析(の)加工	エロシ ウールロシ ウインド	700 ^#709 - # ×	
		立ちろー国際	QIEICI	
Hanako Kissei 女 31才 8ッ 2003.05.28 コメント挿入しまり	是 。			
4ECG -8.068 0.00-	that a	-t-t		
n. en.,	<u>U I I</u>	<u> </u>		
24,375	25,000		30.000	
ビークリスト マーク 2010	F-47-1			
X Value (sec) Y Va	ue (Volt) Interval Time		8	
2,109	2,837		1.11	
2.984	2,834 0,875			
3,852	2,837 0.847			
4,718	2,837 0,887			
5,578	2,033 0,053		ヒークリストが作成され	ています。
8,417	2,837 0,859			
7 997				
the second se		in the second second	NAME OF TAXABLE AND A DESCRIPTION OF TAXABLE	

タブ領域内を選択し、コピーする。

「編集」メニューの「タブ情報」から「全て選択」を選びます。

2+1AD	高額な使行を開かる	TUND (新新会	MIC 7-88 90P
Harako Kisse 2902.05.28 : 403 -8.115	**は、はなどの時代 調査(1)、時代のビーム 第一条は私がかけた 時代は、たちし、中の大利	orio-la	251-12 241-12 241-12	for for for
24,394	区間的爆制大击 区間的納速電空包		•	the set
90	385.42			and the second
2-2021 X 18	5+2.5.6.0. 20 100 - 1000.	+ 040-		Tise .
	974H			STATE OF CONTRACT
	1,882 4,213	2,897	1.H	withou consume

続けて、「編集」メニューの「タブ情報」から「コピー」を選びます。

表計算ソフト上で貼り付ける。

表計算ソフト(例:Excel)を起動します。

🔀 Microsoft Excel – Book1					
8	ファイル(<u>E</u>) 編	[集(Ē) 表示	⊻ 挿入Φ	書式(2) り	パール(エ) デ
	ca 🚽 🔁	📲 🚬 MS P	ゴシック	• 11 •]	B <i>I</i> <u>U</u>
	A1	-	f _x		
	A	В	С	D	E
1					
2					

表計算ソフト上で「貼り付け」を選びます。

🔀 Microsoft Excel – Book1						
	ファイル(E)	編	€(Ē)	表示♡	挿入Φ	
D	2 🔲 🛓	ß	元(2)	戻せません(<u>_)</u>	Otrl+Z
-	A1	U	繰り	返しできませ	<u>ん(R)</u>	Otrl+Y
	A	*	切り	取り ①		Ctrl+X
1		8	วピ-	-(<u>C</u>)		Ctrl+C
2		6	Offic	た クリップボ	-ド(<u>B</u>)	-
4		C.	貼り	100N		Ctrl+V
5			∓≲ ≠ ť	****	unititii (3

生波形上でのピーク位置 (X Value 時間)、ピーク位置での縦軸値(Y Value)、ピークとピークの間隔(Interval Time)が表計算ソフトに表示されます。グラフ等の加工を行うことができます。

🔀 Microsoft Excel - Book1					
	ファイル(<u>E</u>) 編	[集(E) 表示(⊻)	挿入① 書式②	・ ツール(<u>T</u>) データ(<u>I</u>	
D I	🗳 🔛 🗠	- 꽞 🛛 MS Pゴシッ	ク ・ 11 ・	• B I U 🗏	
	I1	▼ f _x			
	A	В	С	D	
1		X Value (sec)	Y Value (Volt)	Interval Time	
2		2.1 09	2.837		
3		2.984	2.834	0.875	
4		3.852	2.837	0.867	
5		4.719	2.837	0.867	
6		5.578	2.839	0.859	
7		6.437	2.837	0.859	
8		7.297	2.834	0.859	
9		8.148	2.839	0.852	
10		9	2.832	0.852	
11		9.836	2.83	0.836	
12		10.664	2.834	0.828	
13		11.5	2.834	0.836	

2. ピークを時系列表示している場合 [間隔トレンド]

```
< 操作の流れ >
RR 間隔 または Peak to Peak 間隔を表示する。
テキスト出力する。
```

RR 間隔 または Peak to Peak 間隔を表示する。

「心電・脈波や呼吸の解析 3-1) RR 間隔または Peak to Peak 間隔を表示する」の手順に従い、下図のように間隔

トレンドを表示させます。

計 REMUTAS E - 월 7개(사진) 483	12-0411(E	「日本 G C C C C C C A A A A A A A A A A A A A	も みーかる ひくつねの	10 AF709 - 8 X
			るのシー目前	
2003.05.28 =>	ス るしよ リク月 ノト挿入しました	S.		
10020 913.412 NDEC	1200,00- 1000,0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MMM	www
1805.647	J	500,000	1888,888	1668.688
マーク ビックア・	ップ 潮時			
保持区間時1 平洋市 社	建分点数: 3	ビーク種類に上向時	Mill: 226 J	DARK: 110Hz

テキスト出力する。

「ファイル」メニューの「キッセイコムテック共通テキストファイル」を選択します。

テキスト出力する先頭位置で、クリックをします。

テキスト出力する終端位置で、クリックします。

テキストデータを保存するダイアログが表示されます。

保存場所を決め、「保存」を押すとテキスト出力が完了します。

注:キッセイコムテック共通テキストファイルについて 当社独自のヘッダ構造を持つテキストファイルです。 フォーマットについては、「付録2テキストファイルフォーマット」を御覧ください。

テキストエディタ(例:NotePad)でテキストデータ(拡張子.kct)を開くことができます。

D sample #UT	21.00 C	C1 = 183
2415-02 #8/02	\$150 \$500	AA78
LKS BIO LEXID	ITA"	3
-m-		17
1.		
450		
"L#F00"		
and and a		
RSec ROPC	Carl and	
0.000000	828,870087	
1821.500000	843,883159	
2732.250000	844.230042	
3643,000000	838,096497	
4553./50000 5404.469750	827,794250 856.812792	
6375,218750	156,460510	
7295.968750	050,500190	
6196,718750	155,519050	113
8107.468730	16-1, 120,000	- 14

BIMUTASII を使用した解析手順

心電図・脈波や呼吸の解析

3-3) LF/HFを算出する

心電図や脈波から特定の周波数(HF成分やLF成分と呼ばれる周期的な変動成分)を算出します。 一般的に、LF成分とHF成分を抽出するには100心拍前後のデータが必要とされています。

<操作の流れ>

- ↓ ①心電図または脈波の生波形を表示する。
- ↓ ②解析する区間を選択する。
- ↓ ③心拍の揺らぎを除去する。
- ↓ ④R 波または、脈波の Peak を検出する。

⑤LF/HF を算出する

#1) 平均振幅を用いる方法

\prec	 (1. 周波数解析を行う。 ☆周波数成分を時系列的に抽出する場合 ☆任意区間の周波数成分を算出する場合
	2. LF と HF を求める。 3. タブ領域内の LF と HF を⊐ピーし、表計算ソフトへ貼り付け、LF/HF を算出する。
<u>#2)</u> ́) 含有量を用いる方法 (1. 周波数解析を行う。 ☆周波数成分を時系列的に抽出する場合 ☆任意区間の周波数成分を算出する場合
	 2. LF と HF を求める。

└3. タブ領域内の LF と HF をコピーし、表計算ソフトへ貼り付け、LF/HF を算出する。

①心電図または脈波の生波形を表示する。

2解析する区間を選択する。

ツールバーの選択範囲モードを選び、選択範囲を設定します。

例:チャネル全体を選択範囲とする場合、ツールバーで「チャネルの全範囲」ボタンを押します。

月	。 チャネルの全範囲

波形上でクリックすると、そのチャネル全体が選択されます。

③心拍の揺らぎを除去する。

「解析」メニューの「微分」から「差分」を選択します。

🌆 BIMUTAS II - [Rawデータ 30minECG]	
📙 ファイル(E) 編集(E) 表示(V) コマンド(C)	解析(A) 加工(P)	ッール(<u>M</u>) ウインド
	周波数解析 積分	
Hanako Kissei 女 31才 6ヶ月	微分	▶ 微分(L)
2003.05.28 コメント挿入しました。 14ECG 3.00- 1	自己相関(<u>A</u>) 相互相関(N)…	差分心

新しいウィンドウに微分された波形が表示されます。 元の波形とは異なりますが、ピーク間隔は元の波形と同じです。

注:心拍の揺らぎの除去

この処理は心拍波形にゆらぎがある場合に行って下さい。 ゆらぎがなく、④項のピーク検索を用いてR波またはPeakを拾ってくることができる場合には、必要ありま せん。

④R 波または、脈波の Peak を検出する。

ツールバーの「全範囲を選択します。」ボタンを押します。

	\mathbf{R}	& ↔ ∧
月 +-	 全範囲	を選択します。

「解析」メニューの「ピーク検索」を選択します。

🦥 BIMUTAS II – [Rawデータ 30minECG]							
📙 ファイル(E) 編	集∈) 表示(⊻)	コマンド(<u>C</u>)	解析(A)	加工(12)	ツーノ		
			周波数 積分	解析			
Hanako Kissei 女 31才 6ヶ月 2003.05.28 コメント挿入しました。			(()) 微分 ▶				
14ECG 0.156	3.00 1		相互相	関(N)			
Volt	2.50-		コヒーレ	ンス(田) ペカトル(C)			
	1.50-		伝達関	数(T)			
	0.00	and the	波形演 句線線	算	1		
	-0.50-		ビーク核	(E/			
	-1.50		トストグ	รง๗ฬ			

「ピーク検索」ダイアログの「詳細設定」タブをクリックし前面に表示させ、以下の様に設定します。

ピーク検索		
詳細設定 閾値 インターバルヒストグラム		
- 解析データ	解析の設定	
選択区間(S): 対象チャネル(C):	解析種類(<u>A</u>):	闘 開始 します 間隔トレンドを選択します
3点のままでかまいません	平滑化微分点数(1))	3 点 3 - 9999 奇鼓を入力して下さい)
	・ 上向き(山)(山)	○ 下向き(谷)(①)
	非検出時間(M):	0000 msec 0のままでかまいません
	HOULD CTV.	Insan Aou
		OK キャンセル

解析種類: "間隔トレンド"を必ず選択してください。

間隔トレンドは、R-R 間隔の時系列変化を示すものです。 間隔トレンドのデータがどのようにして作成されるかについては、BIMUTASIIのヘルプ「解析」-「ピー ク検索」-「間隔トレンド」内の模式図を御覧ください。

「ピーク検索」ダイアログの「閾値」タブをクリックし前面に表示させ、ピークが赤線を越える様に設定します。

注:R波のみを正しく拾ってきているか確認するには

「詳細設定」タブの"解析種類"から"間隔テキスト"を選択してください。 ただし、"間隔トレンド"の結果からは、次項⑤~を行うことができません。"間隔テキスト"でR波を正しく拾ったことを確認したら、もう一度同じ条件で"間隔トレンド"結果を表示させてください。

対処法1:T波がR波と同じくらい大きく、R波のみを拾えない。

③項を行っていない場合は、「微分」の「差分」を行ってください。 それでも正しく拾えない場合は、「ピーク検索」ダイアログの「詳細設定」タブにて、"非検出時 間"を[400~600msec]に設定します。

対処法 2:脈波のピークがはっきりしないため、波形の山にピークが集まり、多く検出されてしまう。

「ピーク検索」ダイアログの「詳細設定」タブにて、"平滑化微分点数"を大きく設定します。 詳しくは、「その他 4-3) 平滑化微分点数と移動平均」を御覧下さい。

「OK」ボタンを押すと、以下の「サンプリング周波数」ダイアログが表示されます。

サンプリング	周波敷		
周波数(<u>F</u>):	1.138	Hz	パラメータ履歴(山)
	ОК		キャンセル

RR 間隔の平均値を周波数に換算したものが、デフォルトで表示されます。次項「周波数解析を行う」のために、 一定の数値を入力する必要があります。

ヒトの心電図では、一般的に"ヒト安静時における RR 間隔の平均的な値である 1.2Hz ほど"~"ヒト運動時における 2.5Hz ほど"の間を入力することが多いです。

注:サンプリング周波数の設定方法

複数の被験者データに対して一つ一つを解析すると、最後に現れるサンプリング周波数は必ず違う値 が表示されます(理由:被験者ごとに平均 RR 間隔が異なるため)。FFT を行う際に FFT ポイント数を揃 えても、FFT を行う範囲(分析時間)が被験者毎に異なってしまい、データを比較できなくなってしまいま す。

<u>最終的に LF/HF を被験者毎または異なる事象毎に比較するには、「サンプリング周波数」ダイア</u> ログに一定の値を入力する必要があります。

「サンプリング周波数」ダイアログにて「OK」ボタンを押すと、新しいウィンドウにRR間隔トレンドが表示されます。

🦣 BIMUTASI - [ピーク検索(間層トレンド) Data2]	
🚼 ファイル(E) 編集(E) 表示(V) コマンド(C) 解析(A) 加工(P) ツール(M) ウインドウ(W) ヘルブ(H) 💷	₽×
Hanako Kissei 女 31才 6ヶ月 2003.05.28 コメント挿入しました。	
14ECD BSC: 842 1200.00- 1000.00- 9000.00- 900.00- 900.00- 90000000000	YY
1535.833 0.000 500.000 1000.000 150 sec ◀	.000 •
- マーク ビックアップ 潜時 	
選択区間数:平滑化微分点数:3 ピーク種類:上向き 閾値:226 周波数:120Hz	_//

#1) 平均振幅を用いる方法

1. 周波数解析を行う。

全体を選択区間として設定するため、ツールバーの「全範囲を選択します。」ボタンを押します。

		& ↔ ∧
月 +-	~~ 全範囲な	を選択します。

☆周波数成分を時系列的に抽出する場合

「解析」メニューの「周波数解析」「「時系列解析」から「FFT」を選択します。

🦣 BIMUTAS II – [ピーク検索(間隔トレンド) Data2]		
📙 ファイル(E) 編集(E) 表示(V) コマンド(C)	解析(A) 加工(P)	· ツール(M) ・ ウイント	やし ヘルプ(円)
╞╏╋┊╠╔╠┇┏┅╒	 周波数解析 ▶ 積分 ▶ 	FFT(<u>F</u>) MEM(<u>M</u>)	
Hanako Kissei 女 31才 6ヶ月 2003.05.28 コメント挿入しました。	微分 ▶ 自己相関(A)	AR(<u>A</u>)	
14ECG 844.612 1200.00- 1100.00-	波形演算 ▶	時系列解析 ♪	FFT(R) MEM(M)

「時系列解析(FFT)」ダイアログの設定を行います。

Altroduction (1997) 本語での検索 - 検測データー - 深刻の広想(1) 114/CO - デーン研究系の - パクエポック - 344 エポック	平均回数: FFT ポイント数: 窓関数: スペクトル単位:	1回に設定します。 データ長に合わせて設定します。 下の囲みをご覧下さい。 ハミングまたはハニングが一般的です 電位
回点非分解後 0019 Hz 出力油供売数 30 違い匹銀ジーの時間 1782023028 mance 11工ポックデータ時間 11エポックデータ時間 55333.353 mance 11工ポックデータ時間 55333.553 mance 55333.553 mance 55333.553 mance	選択範囲時間約 先頭から約 53sec	30min の内、 毎に FFT されます。

注:平均回数とFFT ポイント数の設定方法
心電図の場合、平均回数は1回になるように設定します。
人の心拍を解析する場合、R 波はだいたい 60 回/1min です。 つまり、1分間のデータであれば、R
波データが 60 点分あることになります。2 分間のデータであれば、R波データは 60 x 2 = 120 点あ
ります。

一方、FFT ポイント数は数学的に2のべき乗を取らざるを得ません。すなわち、64, 128, 256, 512, 1024・・・を設定することになります。

そこで、FFT ポイント数には、1 エポックデータ時間が 0min~1min では 64 点、1min~2min は 128 点、2min~4min は 256 点、4min~8min では 512 点、8min~17min なら 1024 点を入力するのが一般的です。

詳しくは、「4-1) FFT ポイント数とサンプリング周波数」 「4-2) FFT ポイント数と平均回数の関係」を御覧下さい。

注:分析時間を、区切り良く設定する方法

FFT ポイント数は2のべき乗である必要があるため、"1エポックデータ時間"を区切りの良い時間に できない場合があります。

ダイアログ上の"データ間隔"に端数を代入して下さい。ただし"データ間隔"は FFT 解析範囲に含まれません。

例: 180000msec(3min)毎に分析したい。しかし、"1 エポックデータ時間"は 176000msec が限界である。

"データ間隔"に 4000msec (=180000msec-176000msec)を代入してください。

FFT 結果が新しいウィンドウに表示されます。

E HIMUTAS I - I	FFT(/197-) Data51						
271(16(1) 編集(014.5E 605A 0	3 解析(8) 7-8(8)	0101908 AST	B.			- 8.8
Hanako Kissel &	117 1+8	and the second se		Concerning and the second			
2003.05.28 3×2	ト挿入しました。						10
0.464							1-
000	8.90-						
\$2,333sec	58.00-						
60C	2.00-						-
104,887100	matrice and						C 2 1 2
0,400							
101,000.00	世界 へ						
1,000							
242 242	14						-
0.177		0					
040	1.00-						
268,667580	100.00-						
000	8.60						
228.000am							
2.732							
	8.80-	a ha	1	and the			
6,688	0.000	8,198	8.298	8,388	3,411	8.500	1.8
1	-						1.1
マーク 含有平 含	RO Bedian Bean	ピーク ビックアップ	ピーク間ま数 スペ	クトル平均価格 スペク	トル田林 信申道3	E 服用値リスト	
·深州区開計: 0 深	111Fe31481: 0	タヤネル教1:33	另解数:007%	FFT#C>HR:M	70101008111	定期時:/パング	

☆任意区間の周波数成分を算出する場合

「解析」メニューの「周波数解析」から「FFT」を選択します。

🌆 BIMUTAS	Ⅱ - [解	析データ	Data2]				
💾 ファイル(E)	編集(<u>E</u>)	表示⊙	コマンド(<u>C</u>)	解析(A)	加工(2)	ツール(M)	ウインドウ()
2 B A	XB	e ka 🛛		周波数	解析	► FF	T(E)
	0.0			積分		ME	EM(M).

「FFT」ダイアログの設定を行います。

周波数解析(FFT)	
解析の設定 区間の指定方法() ○ 平均回数(A) ○ FFTポイント数(E) 64 ②関数(型): スペクトル単位(型): 電位 ▼ 「パンドスペクトル(E) 8000000 Hz 同次数分解能: 0019 Hz 0 69 点 64 点 × 1回	パラメータ環歴の 区間の指定方法:平均回数を1回 窓関数: ハミングまたはハニングが一般的です。 スペクトル単位: 電位

注:FFT ポイント数の設定方法

心電図の場合、一般的に平均回数1回に設定します。

人の心拍を解析する場合、R 波はだいたい 60 回/1min です。つまり、1分間のデータであれば、R 波データが 60 点分あります。2 分間のデータであれば、R波データは 60 x 2 = 120 点あります。 一方、FFT ポイント数は数学的に 2 のべき乗を取らざるを得ません。すなわち、64, 128, 256, 512, 1024・・・を設定することになります。

そこで、FFT ポイント数には、1 エポックデータ時間が 0min~1min では 64 点、1min~2min は 128 点、2min~4min は 256 点、4min~8min では 512 点、8min~17min なら 1024 点を入力するのが一般的です。

FFT ポイント数<全データ点数の場合:

データ先頭から FFT ポイント数分のデータが FFT 解析に使用されるため、データ後半は FFT 結果に反映されません。

FFT ポイント数>全データ点数の場合: FFT するために足りないデータは、自動的に0で埋められます。

詳しくは、「4-2) FFT ポイント数とサンプリング周波数」を御覧下さい。

	E(ii) Data4]	#7#5(A) (N-18/M)	0/1-120W A 11-10V			
				IBIM		
Hanako Kissei 女 31才 2003.05.28 コメント挿入し	8ヶ月 ました。	Constant 1	darichandelindelind ein	LINCA (UNA		
(12) 65,00 ec 60,00 55,00 40,00 35,00 40,00 35,00 25,00 25,00 15,00 15,00 15,00 5,00 5,00 5,00 5,	\bigwedge	6	~~~~		~	~~~~
8.80	2.0					

FFT 結果が新しいウィンドウに表示されます。

2. LFとHFを求める。

「コマンド」メニューの「帯域設定」を選択します。

🦥 BIMUTAS I - [FFT(パワ・	-) Data2]
📙 ファイル(E) 編集(E) 表示(V)	コマンド(Q) 解析(A) ツール(M)
ビー の の 日本 10 mm 10	含有率 会有量 含有量 (Action Mean (Action マージ (Action ビージの後出 (福準編集 データビッジファウ(2) (Attion) 試測(以入) (Attion) 常知(のノントの)法数 (Attion)
0.00	マークの終了(E) ベースカーソルのクリア(C)
0.391	· 带城設定

LFとHF帯域名称と、周波数を入力し「OK」ボタンを押します。

帯域設定		世ば粉な亦再して	ふたタ新し国油米	
帯域数(N):	2	市域数を変更して	から右かと回仮家	
	帯域名	帯域値	帯域色	
帯域1 (1)	LF	0.04 Hz 以上 0.1	5 Hz 未満	I F∙ 0 04H7∼0 15H7
帯域2(2)	HF	0.15 Hz 以上 0	.4 Hz 未満 📃 👤	LI. 0.04112 0.15112
帯域3(3)	alpha	8.000 Hz 以上 13.00	0 Hz 未満	$HE \cdot 0.15H_7 \sim 0.4H_7$
帯域4(4)	beta	<u>13.000</u> Hz 以上 <u>30.00</u>	回 Hz 未満 <u></u>	111 ¹ . 0.15112 * 0.4112
帯域5(5)		Hz 以上	Hz 未満 📃	
帯域6(6)		Hz 以上	Hz 未満 📃 📃	
帯域7(7)		F Hz 以上	Hz 未満	
帯域8(8)		Hz 以上	Hz 未満	
帯域9(9)			Hz 未満	
帯域10 @)		Hz 以上	Hz 未満	
			1	
				1

「表示」メニューの「帯域塗り分け」を選択すると、帯域毎に波形が区分けされます。

「コマンド」メニューの「帯域のスペクトル平均振幅」を選択する。

LFとHFの値がタブ領域に表示されます。

タブ領域が広げられ、LFとHF が計測されていることがわかります。

The BBAUTAS II - [FFT(%(b) Data4]	3
オテイルE 編集(1) 表示(2) また(2) 解析(4) ツール(4) ウインドウ(4) へんだ(4) - ぎ	¢
Herako Kinei 女 31才 6ヶ月 2003.05.28 コメント編入しました。	
14503 1.410 68.09-	•
asec 50,00 40,00 20,00 10,00 0,00	-
	ぶ表示されています。
1403 888 12,471 2,194	
選択区開始: 0 選択チャネル時: 0 チャネル時:1 分解論:002Hz FFTホイント時:64 加賀回時:1 定開時:パシグ	

3. タブ領域内の LF と HF をコピーし、表計算ソフトへ貼り付け、LF/HF を算出する。

 含有率
 含有量
 Median
 Mean
 ビーク
 ビックアッブ
 ビーク周波数
 スペクトル平均振幅
 ス

 14ECG
 単位 msec
 元に戻す(山)
 デに戻す(山)
 タブ領域内で右クリックして、 「すべて選択」を選びます。
 タブでで選択した選びます。

タブ領域内で右クリックして、「すべて選択」を選びます。

タブ領域内が選択された(色反転している)ことを確認した後で、再びタブ領域内で右クリックして、「コピー」 を選びます。

含有率合	有量 Median Mean	ビーク ビ	ックアップ ビーク周波数	スペクトル平均振幅	ス
14ECG	単位 msec	LF 12.671	HF 元に戻す(U)		
			切り取り(工)		
			コピー(<u>©</u>)		
			1801-10(E) 賞順余(D)		

93) Microsoft Excel - Book1 ホーム 挿入 ページ レイアウト 図 ファイル(E) 編集(E) 表示(V) 挿入(P) 書式(Q) MS Pゴシック • 11 • 🗅 🚔 📕 ▶ 元に戻せません(U) **じ** 繰り返しできません(R) A1 B I U - H - 🖄 - A -Α Ctrl+X フォント 5 または 1 🖻 3ピー(C) Ctrl+C f_{x} A1 - () 2 🙀 Office クリップボード(B). З В C A 4 🔁 貼り付け(P)_ト Ctrl+V 5 形式を選択 (THEN(tH(S) 2

表計算ソフト(例:Excel)を起動し、「貼り付け」メニューまたはボタンを選びます。

LFとHF が表計算ソフトに表示されました。表計算ソフト上で、LF/HFを算出します。

*	10 🔌 🖪 🗡	<u>u</u> . E . <u>N</u> .	A' E' E		• 4•		° .00 ÷.
クリッ:	プボ… 回	フォント	G	配置		▣ 数(直
F	2 🗸 💿	<i>f</i> ∗ =02/D2					
	A	В	С	D	Е	F	G
1		単位	LF	HF	LF	:/HF	
2	14ECG	msec	12.671	2.954		4.289]
3							
3							

以上の方法は、書籍「人体計測ハンドブック」(産業技術総合研究所人間福祉医工学研究部門編・朝倉書 店・2003年)を参考にしております。

<u>#2)含有量を用いる方法</u>

1. 周波数解析を行う。

全体を選択区間として設定するため、ツールバーの「全範囲を選択します。」ボタンを押します。

	<u>r</u> D	& ↔ ∧
] +-	~~、 全範囲	を選択します。

☆周波数成分を時系列的に抽出する場合

「解析」メニューの「周波数解析」-「時系列解析」から「FFT」を選択します。

🌆 BIMUTAS II - 【ビーク検索(間隔トレンド	5) Data2]	(
📙 ファイル(E) 編集(E) 表示(V) コマンド(C)	解析(A) 加工(P) ツール(M) ウインドウ(W) ·	ヘルプ(出)
	周波数解析 → FFT(<u>F</u>) 積分 → MEM(M)	
Hanako Kissei 女 31才 6ヶ月 2003.05.28 コメント挿入しました。	微分 ▶ AR(<u>A</u>) 自己相関(A)	
14ECG 844 612 1200.00- 1	波形演算 ▶ 時系列解析 ▶ FFT(F	

「時系列解析(FFT)」ダイアログの設定を行います。

有利閒虧(FFT)	
新作の決定	平均回数: 1回に設定します。 FFT ポイント数: データ長に合わせて設定します。 下の囲みをご覧下さい。 窓関数: ハミングまたはハニングが一般的です スペクトル単位: パワー
国連統分解論 0019 Hz 出力連邦論 20 20 20 20 20 20 20 20 20 20 20 20 20	選択範囲時間約 25min の内、 先頭から約 53sec 毎に FFT されます。

注:平均回数とFFT ポイント数の設定方法

心電図の場合、平均回数は1回になるように設定します。

人の心拍を解析する場合、R 波はだいたい 60 回/1min です。つまり、1分間のデータであれば、R 波データが 60 点分あることになります。2 分間のデータであれば、R 波データは 60 x 2 = 120 点あ ります。

一方、FFT ポイント数は数学的に2のべき乗を取らざるを得ません。すなわち、64, 128, 256, 512, 1024・・・を設定することになります。

そこで、FFT ポイント数には、1 エポックデータ時間が 0min~1min では 64 点、1min~2min は 128 点、2min~4min は 256 点、4min~8min では 512 点、8min~17min なら 1024 点を入力するのが一般的です。

詳しくは、「4-1) FFT ポイント数とサンプリング周波数」 「4-2) FFT ポイント数と平均回数の関係」を御覧下さい。

注:分析時間を、区切り良く設定する方法

FFT ポイント数は2のべき乗である必要があるため、"1 エポックデータ時間"を区切りの良い時間に できない場合があります。 ダイアログ上の"データ間隔"に端数を代入して下さい。ただし"データ間隔"は FFT 解析範囲に含

まれません。

例: 180000msec(3min)毎に分析したい。しかし、"1 エポックデータ時間"は 176000msec が限界である。

"データ間隔"に 4000msec (=180000msec-176000msec)を代入してください。

FFT 結果が新しいウィンドウに表示されます。

AN BIMUTAS I	- [FFT(パワー) Data3]		×
📙 ファイル(E) 🍇	集(E) 表示(V) コマンド(C) 解析(A) ツール(M) ウインドウ(W) ヘルプ(H)	- 8	×
B			
Hanako Kissei 2003.05.28 m x	女 81才 6ヶ月 (つと挿入しました。		
0.000sec	4000.00		-
53.333sec			
106.667sec			
160.000sec			
213.333sec	0.00- 500.00-		
		_	▼ +
0.600	0.000 0.200 0.400		A
		F 3/4- 4	
ヾ ノ 宮有半	3 有重 meurau meau ビーク ビックアッフ ビーク活成数 スペクトル面積 俳 	<u>新春</u>	
チャネル数:28 分角	経能:0.02Hz FFTポイント数:64 加算回数:1 窓関数:ハミング	_	

注:1つ1つの FFT 結果を確認する場合
右下の「−」ボタンを連続してクリック→表示される波形が少なくなります。
右下の「+」ボタンを連続してクリック→表示される波形が多くなります。
御 BIMUTASI - [FFT(パワー) Data3]
Hanako Kissei 女 31才 6ヶ月 2003.05.28 コメント挿入しました。
0.000sec 4000.00- 2.504 2000.00- 9.00- +ーボタンのクリックで
53.333 sec 5.894 msec ² 0.00- 2000.00- 1000.00- 0.00- 表示される波形の数が変更します。
0.007 Hz 0.581
マーク 含有率 含有量 Median Mean ビーク ビックアップ ビーク駆波数 スペクトル面積 標準 (1)
チャネル数:28 分解能:002Hz FFTボイント数:64 加算回数:1 窓開数:ハミング
LF, HF 算出を行う前に、全ての波形を表示して下さい。表示されていない波形については、解 析が行われません。

☆任意区間の周波数成分を算出する場合

「解析」メニューの「周波数解析」から「FFT」を選択します。

🦄 BIMUTASI – [解析データ Data2]							
💾 ファイル(E)	編集(E)	表示♡	בדאג <u>ה</u>	解析(<u>A</u>)	加工(12)	ツール()	⊻) ウインドウ(₩
28	Х 🗈	e 🔁 🛛	•• •• •	周波数	解析) F	

「FFT」ダイアログの設定を行います。

周波鼓解析(FFT)	
 解析の設定 区間の指定方法① ○ 平均回数(A) ○ FFTボイント数(E) 64 	区間の指定方法:平均回数を1回 窓関数: ハミングまたはハニングが一般的です。 スペクトル単位: パワー
窓開数(W): ハミング - スペクトル単位(W): パワー -	
「 バンドスペクトル(B) 1.000000 Hz	選択範囲の点数 69 点の内、
周波数分解能: 0.019 Hz 0 69 点	先頭 61 点分が FFT されます。
64 点 × 1 回	キャンセル

注:FFT ポイント数の設定方法

心電図の場合、一般的に平均回数1回に設定します。

人の心拍を解析する場合、R 波はだいたい 60 回/1min です。つまり、1分間のデータであれば、R 波データが 60 点分あります。2 分間のデータであれば、R 波データは 60 x 2 = 120 点あります。 一方、FFT ポイント数は数学的に 2 のべき乗を取らざるを得ません。すなわち、64, 128, 256, 512, 1024・・・を設定することになります。 そこで、FFT ポイント数には、1 エポックデータ時間が 0min~1min では 64 点、1min~2min は 128 点、2min~4min は 256 点、4min~8min では 512 点、8min~17min なら 1024 点を入力するのが一 般的です。

FFT ポイント数<全データ点数の場合: データ先頭から FFT ポイント数分のデータが FFT 解析に使用されるため、データ後半は FFT 結果に反映されません。
FFT ポイント数>全データ点数の場合: FFT するために足りないデータは、自動的に0で埋められます。
詳しくは、「4-2)FFT ポイント数とサンプリング周波数」を御覧下さい。

FFT 結果が新しいウィンドウに表示されます。

BIMUTASI I I 7/1/€ 300 </th <th>FFT(パワー) Data3 ② 表示 ① コマンド② 前 ③ 本 ① マンド② 前 ③ 本 ① 正 田 ● ○ ③ オ 6ヶ月 →祥入しました。 4000.00- 2000.00- 0.00-</th> <th>₩1(Δ) ッール(M) ウイ]] [] [] [] [] [] [] [] [] [</th> <th>ンやる へいけん ソーー 田 国 - 日日 [</th> <th></th>	FFT(パワー) Data3 ② 表示 ① コマンド② 前 ③ 本 ① マンド② 前 ③ 本 ① 正 田 ● ○ ③ オ 6ヶ月 →祥入しました。 4000.00- 2000.00- 0.00-	₩1(Δ) ッール(M) ウイ]] [] [] [] [] [] [] [] [] [ンやる へいけん ソーー 田 国 - 日日 [
0.600 Hz	0.000	0.200	0.400	
マーク 含有率 含:	有量 Median Mean ビー	・ク ピックアップ ピ・	ーク周波数│スペクトル面	積│標準・

2. LFとHFを求める。

「コマンド」メニューの「帯域設定」を選択します。

LFとHF帯域名称と、周波数を入力し「OK」ボタンを押します。

帯域設定		世中发生亦	一面レイふさ タ	金い国連業	
黒地港からい	2 -	帝域剱を変	更してから名	かと 向波炎	1を八月します。
.4-84 XX /11/-			l		
	帯域名	帯域値		帯域色	
帯域1 (1) 帯域2 (2) 帯域3 (3) 帯域4 (4) 帯域5 (5) 帯域5 (5) 帯域8 (8) 帯域9 (9) 帯域10 (0)	LF HF Jalpha beta	004 Hz 以上 0.15 Hz 以上 8000 Hz 以上 13000 Hz 以上 Hz 以上 Hz 以上	0.15 Hz 未満 0.4 Hz 未満 13.000 Hz 未満 30.000 Hz 未満 Hz 未満 Hz 未満		LF: 0.04Hz~0.15Hz HF: 0.15Hz~0.4Hz
		OK +	ャンセル		

「表示」メニューの「帯域塗り分け」を選択すると、帯域毎に波形が区分けされます。

「コマンド」メニューの「含有量」を選択する。

🦥 BIMUTASI – [FFT(パワー) Data3]							
📑 ファイル(E) 編集(E) 表示(V)	<u>סאעדב (0</u>)	解析(<u>A</u>)	ツール(
	含有率 含有母						
Hanako Kissei 女 31才 6ヶ月 2002 05 20 ーンンレモスレナレイ	Mediag		•				

含有量、すなわち LF と HF がタブ領域に表示されます。

タブ領域が広げられ、LFとHF が計測されていることがわかります。

3. タブ領域内の LF と HF をコピーし、表計算ソフトへ貼り付け、LF/HF を算出する。

タブ領域内で右クリックして、「すべて選択」を選びます。

タブ領域内が選択された(色反転している)ことを確認した後で、再びタブ領域内で右クリックして、「コピー」 を選びます。

マーク 含有率	含有量 Median Mean		2-
14ECG	<u>単位</u> 元に戻す(U)	LF HF 4 1120.316	
	切り取り(T)		
	削除(<u>D</u>)		

表計算ソフト(例:Excel)を起動します。

🔀 Mi	icrosoft Exc	cel – Book1			
8	ファイル(<u>E</u>) 編	諜(E) 表 示	── 挿入Φ	書式(0) り	ν−ル(<u>T</u>) テ
D	🚔 🔛 🗠	📲 🚬 MS P	ゴシック	• 11 • J	B <i>I</i> <u>U</u>
	A1	-	f _x		
	A	В	С	D	E
1					
2					

表計算ソフト上で「貼り付け」を選びます。

🔀 Microsoft Excel – Book1							
8	ファイル(E)	編	集(E) 表示(⊻)	挿入①	(<u>0</u>) た客		
Dı	🛩 🖬 🕨	ß	元に戻せません(U)		Otrl+Z		
	A1	Q	繰り返しできません	,(<u>R</u>)	Ctrl+Y		
	A	8	切り取り(工)		Ctrl+X		
1			⊐ピー©)		Ctrl+C		
2		G	Office クリップボー	ا			
4		2	貼り付け(P)		Ctrl+V		
5			#####	ntttik	3		

LFとHF が表計算ソフトに表示されました。表計算ソフト上で、LF/HFを算出します。

X •	🗙 Microsoft Excel – Book1							
8	ファイル(<u>F</u>) 新	扁集(<u>E</u>)	表示(⊻) 損	◎ 元書 ◎ ① 入御	ツール(① デー	夕(<u>D</u>) 「	ウィンドウ₩)	ヘルプ(日
	🖻 🔒 😂	B) 🛕 🖻 🕨	ο• 🍓 Σ•	≜↓ 🛍 100%	- 2	NS P	ゴシック
	F2	-	<i>f</i> x =(D2/D2				
	A		В	С	D	E	F	
1			単位	LF	H	F	LF/HF	
2	146	ECG	msec^2	5041.2:	24 1120.31	6	4.5	500
3								

BIMUTASII を使用した解析手順

3-3-30 LF/HF を算出する

心電図・脈波や呼吸の解析

3-4) 心拍数や呼吸数を数える

生波形上で、任意区間のピーク数を数えます。

<操作の流れ>

- ↓ ①心電図・脈波や呼吸の生波形を表示する。
- ↓ ②解析する区間を選択する。
- ↓ ③心拍の揺らぎを除去する。
- ↓ ④R 波・脈波の Peak または呼吸の Peak を検出する。[間隔テキスト]
- ↓ ⑤タブ領域内を選択し、コピーする。
- ⑥表計算ソフト上で貼り付ける。

①心電図・脈波や呼吸の生波形を表示する。

2解析する区間を選択する。

ツールバーの選択範囲モードを選び、選択範囲を設定します。

例:チャネル全体を選択範囲とする場合

ツールバーで「チャネルの全範囲」ボタンを押します。

波形上でクリックすると、そのチャネル全体が選択されます。

③心拍の揺らぎを除去する。

「解析」メニューの「微分」から「差分」を選択します。

🏧 BIMUTASI - [Rawデータ 30minECG]						
📑 ファイル(E) 編集(E) 表示(V) コマンド(C)	解析(A) 加工(P)	ツール(M) ウインド				
	周波数解析 積分	V — 🖽 💷				
Hanako Kissei 女 31才 6ヶ月 2003.05.28 コメント挿入しました。	微分 自己相關(A)	 微分(L) 差分(C) 				
14ECG 3.50- 3.00-	相互相関(N)	└────────				

新しいウィンドウに微分された波形が表示されます。 元の波形とは異なりますが、ピーク間隔は元の波形と同じです。

注:心拍の揺らぎの除去

この処理は心拍波形にゆらぎがある場合に行って下さい。 ゆらぎがなく、次項④のピーク検索を用いてR波またはPeakを拾ってくることができる場合には、必要あり ません。

④R 波·脈波の Peak または呼吸の Peak を検出する。[間隔テキスト]

ツールバーの「全範囲を選択します。」ボタンを押します。

		<u>≈ ~ ∧</u>
月 +-	~~~ 全範囲	を選択します。

「解析」メニューの「ピーク検索」を選択します。

「ピーク検索」ダイアログの「詳細設定」タブをクリックし前面に表示させ、以下の様に設定します。

ピーク検索		? 🛛
詳細設定 閾値 インターバルヒストグラム		
		- パラメータ履歴(山) -
解析データー	解析の設定	
選択区間(S): 対象チャネル(C): 選択区間1 1:14ECG	解析種類(<u>A</u>):	間隔テキスト
	平滑化微分点数(N):	3 点
3点のままでかまいません	ビーク種類	(3 - 9999 奇数を入力して下さい)
	● 上向き(山)(型)	○ 下向き(谷)(型)
	非検出時間(M):	0 msec
0のままでかまい	いません 🦯	2259 Volt
		OK キャンセル

解析種類:"間隔テキスト"を必ず選択してください。

「ピーク検索」ダイアログの「閾値」タブをクリックし前面に表示させ、全てのピークが赤線を越える様に設定しま

「OK」ボタンを押すと、新しいウィンドウに間隔テキストが表示されます。

⑤タブ領域内を選択し、コピーする。

タブ領域を拡大して、ピークリストを表示させます。

右端のスクロールを最上段まで押し上げます。

① BIMUTAS II - (ピーク検索(間隔テキスト) Data2]	
😸 ファイル(E) 編集(E) 表示(U) コマンド(C) 解析(A) 加工(E) ツール(M) ウインドウ(M) ヘルブ(E) 💷 🗃 🗙	
Hanako Kissei 女 31才 8ヶ月 2003-05-29 コメント挿入しました。	
	スクロールバーにマウスを合わせ、
28.351 28.000 28.000 38.000	左ボタンを押しながら
ビークリスト マーク 溜時 ビックアップ	最上段まで押し上げます。
	F
增於达聞版: 0 增於于中不从版: 0 半消化成分点版: 3 ピーク種類:上向き 陽道: 226	

ピークリストが作成されています。

「編集」メニューの「タブ情報」から「全て選択」を選びます。

A BIMUTAS	II - 18-	-ク検索(間隔テキス	ト)Data2	2]		
🖶 771NE)	編集(E)	表示₩	コマンド©	解析(<u>A</u>)	加工(12)	ツール(M)	ウインドウ(
🛎 🖬 🖨	直前の	操作を繰り:	返す(山)	Ctrl+R		>- N 6	田回
Hanako Kisse 2003.05.28 <u>:</u> 14ECG	チャネル 選択区 データの	の切り取り 間のコピー()貼り付け(E	(T) (C) (V)	Otrl+X Otrl+C Otrl+V	1		
-0.115	新しい	ケインドウにき	占り付け(W)			~~~	
24.304	区間の 区間の	選択方法 数値指定()	<u>v</u>	•	3.000	-	28.000
Sec	波形メ	E		•			
ビークリスト X Va	チャネル 被験者	名称、コメ) 情報(<u>S</u>)	∠ト(<u>H</u>)		Time		
	タブ情報	1		•	全て選択	R(A) Ctrl+S	hift+A
	3.852 4.719		2.837	0.86	切り取り コピー(C)	(U) Ötrl+S Ctrl+S	hift+X hift+C

続けて、「編集」メニューの「タブ情報」から「コピー」を選びます。

A BIMUTAS	II - 18-	-り検索(問題テキス	ト) Data	2]		
🗄 771/WE	編集(E)	表示①	コマンド(©)	解析(<u>A</u>)	加工(2)	ツール(M)	ウインドウ(
2 B 8	直前の	操作を繰り	返す(山)	Ctrl+R		√ / -	
Hanako Kisse 2003.05.28 <u>-</u> 14ECG -0.408	チャネル 選択区 データの 新しい!	の切り取り 間のコピー! 卵貼り付け(E アインドウに!	田 ② 沙 別付けW)	Ctrl+X Ctrl+C Ctrl+V	ļ	~~~~	
25.109	区間の: 区間の:	選択方法 故値指定(<u>N</u>)	•	3.000		28.000
sec	波形メ	E		•			
ピークリスト	チャネル 被験者	名称、コメ 情報(S)	ント(出)			_	_
18	タブ情報	fi		Þ	全て選択	(<u>A</u>) Ctrl+S	hift+A
18	7.475		2.830	0.89	切り取り	(<u>U</u>) Ctrl+S	hift+X
18	18.365		2.832	0.89		Ctrl+S	hift+C
18	19.248		2.834	0.88		N	

⑥表計算ソフト上で貼り付ける。

表計算ソフト(例:Excel)を起動します。

🗙 Microsoft Excel - Book1								
8	ファイル(<u>E</u>) 編	諜(E) 表 示	⊻ 挿入Φ	(回) たま	ソール① デ			
D	🚔 🔚 🗠	🖓 MS P	ゴシック	• 11 • 3	B <i>I</i> <u>U</u>			
	A1	•	f _x					
	A	В	С	D	E			
1								
2		•						

表計算ソフト上で「貼り付け」を選びます。

🔀 Microsoft Excel - Book1						
8	ファイル(E)	編	集(E) 表示(V) 挿入(〕 書式(<u>0</u>)		
D	2 🖬 🕨	ß	元に戻せません(U)	Ctrl+Z		
	A1	Q	繰り返しできません(<u>R</u>)	Ctrl+Y		
	A	Ж	切り取り(<u>T</u>)	Ctrl+X		
1		E:	⊐Ľ−©)	Ctrl+C		
2		G	Office クリップボード(<u>B</u>)			
4		2	貼り付け(P) _N	Ctrl+V		
5			形式 ********	(2)		

生波形上でのピーク位置 (X Value 時間)、ピークの縦軸値(Y Value)、ピークとピークの間隔(Interval Time)が表 計算ソフトに表示されました。

🔀 Mi	🗙 Microsoft Excel - Book1							
8	ファイル(E) 編集(E)	表示(⊻) 挿入	(① 書式(①) ツ	νール(<u>T</u>) データ(<u>D</u>) ウ			
D (🎽 🖬 🔒 🖏 🌢	🖗 🛕 🖻 🗠	- 🍓 Σ - 🛃	, 🛍 100% -	2			
	01 🗸	<i>f</i> * =00	DUNT(04:031)					
	A	В	С	D	E			
1		ビーク数	28					
2								
3	X Value (mseic)	Y Value (Volt)	Interval Time					
4		234.373	2.839					
5		1148.426	2.834	914.053				
6		2054.667	2.834	906.241				
7		2953.095	2.834	898.429				
8		3859.336	2.839	906.241				
9		4757 765	2 834	898 429				

貼り付けられた最終行を見ると、Peak 数がわかります。

この場合、 28個(=29行 – ヘッダ1行)

のピークがあります。

心電図・脈波や呼吸の解析

3-5) 最高・最低・平均血圧を算出する

脈波から、区間毎の最高・最低血圧を算出します。 その後、表計算ソフト上で、平均血圧を算出します。

<操作の流れ>

- ↓ ①脈波の生波形を表示する。
- ↓ ②解析する区間を選択する。
- ↓ ③最高・最低血圧を算出する。
- ↓ ④タブ領域内を選択し、コピーする。
- ⑤表計算ソフト上で、脈圧と平均血圧を算出する。

①脈波の生波形を表示する。

②解析する区間を選択する。

ツールバーの選択範囲モードを選び、選択範囲を設定します。

例:チャネル全体を選択範囲とする場合

ツールバーで「チャネルの全範囲」ボタンを押します。

波形上でクリックすると、そのチャネル全体が選択されます。

③最高・最低血圧を計測する。

「解析」メニューの「区間解析」から最高血圧なら「最大値」、最低血圧なら「最小値」を選択します。

	- [Rawデータ	sample_ala	rm]					
🚦 ファイル(E) 編	集(E) 表示(⊻)	コマンド(<u>C</u>)	解析(<u>A</u>)	加工(12)	ツール(1) ウイ	ンドウ(Ш)	ヘルプ(円)
► ► ► ▲ Kissei Taro 男	10才 3ヶ月		 周波数 積分 微分 自己相 	解析 関(A)		<u>- </u>		
<u>BP</u> 80.199 mmHg	150.00- 120.00- 90.00- 60.00- 30.00- -30.00- -30.00- -60.00- -90.00- -120.00- -120.00-	MM	相 ロ ち ロ れ し し し し し し し し し し し し し	ーロー 		M	M	M
7.574	4.	.000	区間解	析		晨大値公 晨小値(№) k	

「区間解析(最大値)」または「区間解析(最小値)」ダイアログ上で、以下の様に設定し「OK」ボタンを押します。

区間解析(最大値)			区間指定:横軸数値
- 解析データ	- 区間指定	バラメータ履歴(P)	
選択区間(G): 対象チャネル(C): 選択区間1 2: BP	● 横軸数値(型) ○ データ点数(型)		区間幅: 計測したい時間を入力します。
	区間幅(W) 30000.000 msec		
	最小値 最大値 3.906 149996.547		
- 潜抗リスト(U)	200005.047 miceo	解植	所する選択範囲を選び、
	10 区間 キャンセル	登	録」ボタンを必ず押して下さい。

例:選択区間を 30sec 毎に区切り、30sec 毎の最高血圧を計測する場合

新しいウィンドウに、最高血圧または最低血圧を時系列に並べた波形が表示されます。

k BIMUTAS	Ⅱ - 【解析データ	Data2]				
💾 771N(E)	編集(E) 表示(V)	コマンド(<u>C</u>) 解	析(<u>A</u>) 加工(P) ツ	ール(型) ウインドウ(₩ ヘルプ(円)	- 8 ×
683	る陶晶協			<u>∧</u> – ⊞ 📃		
Kissei Taro	男 40才 3ヶ月					
<u>BP</u> 157.954 mmHg	200.00- 120.00- 80.00- 0.00- -40.00- -40.00- -80.00- -120.00- -180.00- -200.00-					
239.998 sec		.000	100.000	21	00.000	+
マーク 潜時	面積 平均値	直 ビーク 標準(嘉差│ ビックアップ	「数値リスト」		
選択区間数: 0	選択チャネル数: 0	チャネル	教:1 サンプリ	ング周波数:0.0Hz		

④タブ領域内を選択し、コピーする。

新しいウィンドウ内の波形を全て選択するため、ツールバーで「全範囲を選択します。」ボタンを押します。

「コマンド」メニューの「数値リスト」から「選択区間」を選びます。

🏧 BIMUTAS II - [解析データ Data2]							
📙 ファイル(E) 編集	≹(E) 表示(⊻)	コマンド(2) 解析(4) 加工(P) ツール(M) ウインドウ(W				
EP 120.072 mmHg	40才 3ヶ月 200.00- 160.00- 120.00- 80.00-	マーク 潜時 区間面積 平均値 ピーク値検出 標準編差 データピックアップ(P					
	40.00- 0.00- -40.00- -80.00-	数値リスト マークの終了(E) ベースカーソルのク!	・ バーカーソル区間©) マーク区間(M)… 遅沢区間(S)…				

タブ領域を拡大して、数値リストを表示させます。

右端のスクロールを最上段まで押し上げます。

-	「新データ Data2]		
1 ファイル(1) 編集(1)	表示(1) コマンドロ) 解析(1) 加工(1) ツール(1) ウインドウ(1) ヘルナビ	- # X	
PXTI			
1_Pressure 11 143.714 11 milit: -11	80,00- 0,00- 92,00-	- 4	スクロールバーにマウスを合わせ、
150.000	1.680 58.500 100.000 151.508	210,100 250,000	
マーク 溜時 面積	平均道 ビーク 標準編巻 ビックアッゴ 歌謡リスト		左ボタンを押しながら
240,000	149,744	× 1	
270.000	140,700		島 ト 邸 ま で 押 1 ト げ ま オ
330,000	149,021	<u>^</u>	取上校よく17し上りより。
368.000	149,821		
299.000	149.836	<u> </u>	
420,000	149,005		
400,000	140.051		
518,000	142.005		\checkmark
	APCZARAT: 0 AZI97+2.681: 0 Fv2.681:1 77.	/プリング第1余数100Hz	~

「編集」メニューの「タブ情報」から「全て選択」を選びます。

A BIMUTAS	I - 12-	-ク検索(間隔テキス	ト) Data	2]		
= 771N(E)	編集(E)	表示⊙	コマンド(C)	解析(<u>A</u>)	加工(2)	ツール(<u>M</u>)	ウインドウ(
≥ ∎8	直前の	操作を繰り:	返す(山)	Ctrl+R	2 😂 6	0 / -	
Hanako Kisse 2003.05.28 <u>:</u> 14ECG -0.115	チャネル 選択区 データの 新しい	の切り取り 間のコピー()貼り付け(E ウインドウに見	D © 2) White W	OtrI+X OtrI+C OtrI+V	I		-
24.304	区間の 区間の	選択方法 数値指定()	<u>N</u> 0	•	1.000		28.000
Sec	波形メ	£		•			
ビークリスト X Va	チャネル 被験者	,名称、コ火 情報(<u>S</u>)	ント(世)		Time		
	タブ情華	5		•	全て選択	(A) Ctrl+S	hift+A
	8.852 4.719		2.837	0.86	切り取り(コピー(<u>C</u>)	U) Ötrl+S Ctrl+S	hift+X hift+C

続けて、「編集」メニューの「タブ情報」から「コピー」を選びます。

A BIMUTAS	II - 12-	-り検索(間隔テキス	F) Data	2]		
💾 77-1NE	編集(E)	表示⊙	コマンド©	解析(<u>A</u>)	加工(2)	ツ−ル⊠	ウインドウ(
2 B B	直前の	操作を繰り	返す(旦)	Ctrl+R		0M-	
Hanako Kisse 2003.05.28 <u>-</u> 14ECG -0.408	チャネル 選択区 データの 新しい	の切り取り 間のコピー 潮訪り付け() アインドウに!	0 0 2) 101111	Ctrl+X Ctrl+C Ctrl+V	ļ	~ ~~	
25.109	区間の 区間の	選択方法 故値指定(<u>N</u>)	•	3.000		28.000
sec	波形メ	E		+			
ピークリスト	チャネル 被験者	名称、コメ 情報(<u>S</u>)…	ント(山)			_	_
18	タブ情報	fi		Þ	全て選択	(<u>A</u>) Ctrl+S	ihift+A
18	7.475		2.830	0.89	切り取り	(<u>U</u>) Ctrl+S	ihift+X
18	18.365		2.832	0.89		Ctrl+S	ihift+C
18	9.248		2.834	0.88	3	1	

⑥表計算ソフト上で貼り付ける。

表計算ソフト(例:Excel)を起動します。

🔀 Microsoft Excel - Book1									
	ファイル(<u>E</u>) 編	諜(E) 表示	☑ 挿入页	書式(<u>0</u>))	ツール(工) デ				
Dı	🖆 📘 😂	• 🌺 MS P:	ゴシック	• 11 •	B / U				
	A1	•	fx.						
	A	В	С	D	E				
1									
2									

表計算ソフト上で「貼り付け」を選びます。最高血圧が表計算ソフトに表示されます。

🔀 Microsoft Excel – Book1								
8	ファイル(E)	編	集(E) 表示(⊻) 挿入(I) 書式(0)				
Dı	🛎 🖪 🕨	кЭ	元に戻せません(U)	Ctrl+Z				
	A1	Q	繰り返しできません(<u>R</u>)	Ctrl+Y				
	A	Ж	切り取り(<u>T</u>)	Ctrl+X				
1			⊐Ľ−©)	Ctrl+C				
2		A						
3		-	Office 99997/(- [A <u>D</u> /					
4		2	貼り付け(P)	Ctrl+V				
5			形式未避损 [Sundth	(5)				

同様に⑤⑥項を最低血圧についても行います。

最高血圧と最低血圧を元に、脈圧と平均血圧を計算すると、以下の様になります。

	A	В	С	D	E	F	G	н	Ι	J	K	
1	最高血圧			最低血圧			脈圧	[最高血圧-最低血圧]		平均血圧	[最低血圧+脈圧/3]	
2	sec	mmHg		sec	mmHg		sec	mmHg		sec	mmHg	
3	0	123.423		0	54.875		0	68.548		0	77.724	
4	30	120.072		30	53.607		30	66.465		30	75.762	
5	60	131.874		60	53.124		60	78.75		60	79.374	
6	90	127.8		90	54.15		90	73.65		90	78.700	
7	120	170.752		120	53.124		120	117.628		120	92.333	
8	150	162.27		150	56.505		150	1 05.765		150	91.760	
9	180	147.781		180	57.954		180	89.827		180	87.896	
10	210	153.879		210	57.893		210	95.986		210	89.888	
11	240	157.954		240	63.024		240	94.93		240	94.667	
12	270	163.749		270	64.473		270	99.276		270	97.565	
13												

その他

4-1) FFT ポイント数とサンプリング周波数の関係

FFT を行うための設定項目(FFT ポイント数・平均回数)と、解析するデータ点数(サンプリング周波数)に よって、分析時間(時間分解能)が決まります。 また、FFT ポイント数を決定することにより、FFT 解析後のデータ値間隔である周波数分解能が決まりま す。

FFT ポイント数を小さく 分析時間が短い 周波数分解能が低い 大きく 分析時間が長い 周波数分解能が高い

・サンプリング周波数とは

データ収録時に、1秒間に何点分のデータ点を保持するかを決めるのがサンプリング周波数です。この数によって、データ点と点の間隔時間(t)が決定します。

例:5Hzのサンプリング周波数で収録を行った場合

・FFT ポイント数とは

FFT 解析を行うデータ点数のことです。FFT 数式上、FFT ポイント数は2のべき乗である必要があります。 弊社製品では、64,128,256,512・・・という固定の2のべき乗数から選択して頂くことになります。

·FFT ポイント数とサンプリング周波数の関係

FFT ポイント数を変更することによる分解能への影響を下表に示します。分析時間と周波数分解能については、 次頁 1.と 2.の詳細説明を御覧ください。

	分析時間(時間分解能)	周波数分解能
FFT ポイント 小	短い 細かい区間に分けて分析できる利点あり	低い
FFT ポイント 大	長 い	高い FFT 結果を詳細に分析できる利点あり

注:平均回数について

上記の例では簡潔に説明する目的で、平均回数1回の場合を想定して説明しています。

脳波解析を行う際、平均回数を1より大きく設定する場合は、「各種設定の説明 1-2)FFT ポイント数 と平均回数の関係」も御覧ください。 1.分析時間(時間分解能)

FFT ポイント数を決定すると、データ上での分析時間が決定します。 <分析時間 = FFT ポイント数 ÷ サンプリング周波数 = FFT ポイント数 × t >

例:サンプリング周波数 5Hz のデータ上で、FFT ポイント数 64 に設定して FFT を行う場合

2.周波数分解能

FFT ポイント数を決定することで、FFT 解析結果の周波数分解能が決まります。

<周波数分解能=サンプリング周波数÷FFT ポイント数>

例:サンプリング周波数 5Hz のデータ上で、FFT ポイント数 64 に設定して FFT を行う場合

<u>その他</u>

4-2) FFT ポイント数と平均回数の関係

FFT を行うための設定項目には、FFT ポイント数と平均回数があります。 加算平均することによって、特定区間の特徴に左右されにくい結果を得ることができます。

・平均回数とは

FFT 解析時に、FFT 結果を平均化する回数を指します。

·FFT ポイント数と平均回数の関係

1区間の分析時間は、FFT ポイント数÷サンプリング周波数で表されます。

(詳しくは、「各種設定の説明 4-1) FFT ポイント数とサンプリング周波数の関係」を御覧ください。)

1区間の FFT 結果を平均回数分だけ加算平均します。

<分析時間=1区間の分析時間×平均回数

= (FFT ポイント数 ÷ サンプリング周波数) × 平均回数 >

例:サンプリング周波数 200Hz のデータに対して、

FFT ポイント数 128 点、平均回数 5 回の FFT を行った場合

BIMUTASII を使用した解析手順

<u>その他</u>

4-3) 平滑化微分点数と移動平均

移動平均には、波形を均しなだらかな状態にする働きがあります。

どの程度なだらかにするのかを決定するのが平滑化微分点数です。包絡線・コヒーレンスやピーク検索を 行う際にも入力する必要があります。

平滑化部分点数を大きく よりなだらかな波形になる。 小さく 原波形に近く、細かい波形になる。

・移動平均とは

単純移動平均で平滑化微分点数=3点にした場合を例に説明します。

平滑化微分点数を大きくするに従って、波形の縦幅が小さくなり、山の起伏がなだらかになっていることがわか ります。

包絡線やコヒーレンス・ピーク検索を行う場合は、この平滑化微分が行われた後の波形(上記のような波形)を 用いて処理が行われます。

1、1 梁米、1、76日人26五万月71

1.FFT	 付録1-1
2.窓関数	付録1-3
3 . M E M	付録1-5
4 . A R	付録1-8
5. 包絡線	付録1-10
6.自己相関関数	付録 1-12
7.相互相関関数	付録1-12
8.クロススペクトル	付録1-13
9. 伝達関数	付録1-14
10.コヒーレンス	付録1-15
11 . 微分 · 差分	付録1-16
12.積分	付録1-17
13 . デジタルフィルタ	付録1-18

付録2:テキストファイルフォーマット

付録1:補足説明

1.FFT

BIMUTAS[®]では、以下の手順でFFTによるスペクトル推定を行っています。

ダイアログで指定した、FFT ポイント、または平均回数(K)から、分析区間単位(1エポック)を決定します。 窓関数を掛けます。(次項「2-2.窓関数」を参照してください)

FFTによる生 (ナマ)のスペクトルSnを算出します。

$$Sn = \frac{W}{N \times \Delta t} \left\{ \left(\Delta t \times Rn \right)^2 + \left(\Delta t \times In \right)^2 \right\} \qquad W = \begin{bmatrix} 1 & n = 0 \\ \\ 2 & 1 & n & N \neq 2 + 1 \end{bmatrix}$$

t:サンプリング間隔 Rn:FFTから求った実数部 In: " 虚数部

分析時間がデータ数Nの複数区間となる場合には、スペクトルSnを加算平均してからスペクトルを推定します。

$$\hat{Sn} = \frac{1}{K} \sum_{n=1}^{K} Sn$$
 K : データ数 N の 区 間 数 (平均 回 数)

これにより分散の少ないスペクトル推定値が求まります。

設定されているスペクトル単位にしたがって値を計算します。単位には、等価的電位、パワー、dBの3種類があ ります。

等価的電位(volt など) $Vn = \sqrt{\hat{S}n}$

パワー (volt^2 など) $Pn = \hat{S}n$

d B

 $dBn = 20 \cdot \log \sqrt{Pn / SMAX}$ $= 10 \cdot \log(Pn / SMAX)$

Pn : パワースペクトル

SMAX :パワースペクトル最大値

2. 窓関数

FFTを使用する解析を行う場合、FFTの部分区間長における不連続接点の影響を軽減する為に、窓関数をデータに 掛けるという方法をとります。

BIMUTAS[®] では次に示す窓関数を指定することができます。

・矩形窓

	\bigcap	┌0.5-	0.5cos(2 n/N)	\mathcal{I}
			0 n N - 1	
	Wn=			
		└0.0	上記以外)
→ n	\sim			/

・ハミング窓(Hamming)

矩形窓以外の窓関数では、区間内の原波形に対し、基線算出処理を行います。

一般的には、取り出したデータの長さが波形の周期の整数倍に一致しない場合には、矩形窓を使うべきではありません。
 2つの周波数成分が接近している場合にはハミング窓が良いとされています。また、周波数成分があまり接近していなくて、しかも非常に小さな成分まで検出する場合には、ハニング窓かブラックマン窓が良いとされています。

3 . M E M

MEMは、最大エントロピー法 (Maximum Entropy Method)という周波数解析の手法です。

FFTと比較した場合のMEMの特徴は、

メリット

- ・スペクトルの分解能が非常に高い
- ・スペクトルがなだらかである
- ・短いデータから周波数を求めるのに有効である
- デメリット
- ・非線形処理を用いる方法であるため、振幅や位相の検出ができない。
- ・FFTに比べ計算時間が長い

です。

BIMUTAS[®] で使用している方法は、MEMの中でも最も分解能が優れているBurg法です。

以下にMEMの計算手順を示します。

解くべき方程式

$$\begin{bmatrix} C_0 & C_1 & \cdots & C_m \\ C_1 & C_0 & \cdots & C_{m-1} \\ \vdots & \vdots & & \vdots \\ C_m & C_{m-1} & \cdots & C_0 \end{bmatrix} \begin{bmatrix} I \\ Y_{m1} \\ \vdots \\ Y_{mm} \end{bmatrix} = \begin{bmatrix} P_m \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

C_k : ラグk tの自己相関関数

 Y_{mk} :m次の予測誤差フィルターを設計するときの第k番目の係数

P_m : (m+1) 点予測誤差フィルターからの平均出力

未知数
$$Y_{m1,}$$
 Y_{m2} \cdots Y_{mm}
 C_m (m+2)個を求める
 P_m

(方程式は(m+1)なので条件が1つ不足しています)

 Y_{mm} の予測 予測誤差フィルターに信号を前向きに通す場合と、逆向きに通す場合の平均出力 P_m を最小とします。

 $P_{m} = \frac{1}{2} \cdot \frac{1}{N-m} \sum_{i=1}^{N-m} \left\{ \left(X_{i} + \sum_{k=1}^{m} Y_{mk} X_{i+k} \right)^{2} + \left(X_{i+m} + \sum_{k=1}^{m} Y_{mk} X_{i+m-k} \right)^{2} \right\}$

$$\begin{bmatrix} 1\\ Y_{m1}\\ Y_{mm}\\ \vdots\\ Y_{mm} \end{bmatrix} = \begin{bmatrix} 1\\ Y_{m-1,1}\\ Y_{m-1,2}\\ \vdots\\ Y_{m-1,m-1}\\ 0 \end{bmatrix} + \begin{bmatrix} 0\\ Y_{m-1,m-1}\\ Y_{m-1,m-2}\\ \vdots\\ Y_{m-1,1}\\ 1 \end{bmatrix}$$

$$Y_{mk} = Y_{m-1,k} + Y_{mm}Y_{m-1,m-k}$$
$$C_0 = P_0 = \frac{1}{N} (X_i - \overline{X})^2$$

$$b_{mi} = b_{m-1,i} + a_{m-1,m-1}b_{m-1,i+1}$$

 $b'_{mi} = b'_{m-1,i+1} + a_{m-1,m-1}b_{m-1,i+1}$
 $b_{0i} = b'_{0i} = x_i$
 $b_{1i} = x_i$
 $b'_{1,i} = X_{i+1}$

$$P_{m} = \frac{1}{2(N-m)} \sum_{i=1}^{N-m} \left\{ \left(b_{mi} + Y_{mm} b'_{mi} \right)^{2} + \left(b'_{mi} + Y_{mm} b_{mi} \right)^{2} \right\}$$

これを最小にする

$$\frac{\delta P_m}{\delta Y_{mm}} = 0 \qquad \qquad Y_{mm} = -2\sum_{i=1}^{N-m} b_{mi} b'_{mi} / \sum_{i=1}^{N-m} \left(b_{mi}^2 b'_{mi}^2 \right)$$

 $Y_{\scriptscriptstyle mk}$ の計算

$$Y_{mk} = Y_{m-1,k} + Y_{mm}Y_{m-1,m-k}$$
(k = 1, m - 1) $Y_{m-1,k}$ |d (m - 1) @

 P_m の計算

 $P_m = P_{m-1} \left(1 - Y_{mm}^2 \right)$

付録 1-6

 C_m の計算

$$C_m = -(Y_{m1}C_{m-1} + Y_{m2}C_{m-2} + \dots + Y_{mm}C_0)$$

F P E (Final Prediction Error)の計算

$$(FPE)_{m} = \frac{N + (m+1)}{N - (m+1)} S_{m}^{2}$$

$$S_{m}^{2} = \sum_{i=m+1}^{N} \left(X_{i} + Y_{m1} X_{i-1} + Y_{m2} X_{i-2} + \dots + Y_{mm} X_{i-m} \right)^{2} / (N - m)$$

$$= \frac{1}{N - m} \sum_{i=1}^{N-m} \left(X_{i+m} + \sum_{k=1}^{m} Y_{mk} X_{i+m-k} \right)^{2}$$

mが予め指定した値になるか、FPEが最小値になるまで から を繰り返します。 $m < 2\sqrt{N} \sim 3\sqrt{N}$ にとどめます。

スペクトルの計算

$$P(f) = \frac{\Delta t P_m}{\left|1 + \sum_{k=1}^m Y_{mk} e^{i2\pi \eta k \Delta t}\right|^2}$$

付録 1

4 . A R

スペクトル解析において分解能が特に優れているのが、 A R (自己回帰モデル)です

ARの特徴としては

メリット

- ・スペクトルの分解能が非常に高い。
- ・スペクトルがなだらかである。
- ・短いデータから周波数スペクトルを求めるのに有効である。

デメリット

・モデル次数によって結果が全く異なるため、モデル次数の決定が難しい。

などが挙げられます。

以下にARの計算手順を示します。

窓関数の計算

窓関数については「2-2.窓関数」を参照してください。

自己相関関数の計算

自己相関関数の計算については、「2-6.自己相関」を参照してください。

1

モデル次数の計算

モデル次数が入力されていない場合には、次数を決定しなければなりません。しかし、自己回帰モデルにおいて は、モデル次数が重要な意味を持っているため、その選択の仕方によっては全く異なった結果となってしまいま す。

BIMUTAS では、2種類のモデル次数計算方法を採用しました。

赤池情報基準 (Akaike's Information Creterion)

$$AIC(p) = N \log(\delta_p^2) + \frac{2(p-1)}{N}$$

最終予測誤差 (Final Prediction Error Creterion)

$$FPE(p) = \delta_p^{2} \left(\frac{N+p+1}{N-p-1} \right)$$

モデル係数の計算

(1) で求められた自己相関関数 R_{xx} を用いて初期値を設定します

$$\delta_0^2 = R_{xx}(0)$$

$$\Delta_0 = R_{xx}(1)$$

(2) 次数を計算します。
$$\rho_{k} = -\Delta_{k-1} / \delta_{k-1}$$

$$\delta_{k} = \delta_{k-1} (1 - \rho_{k}^{2})$$

$$a_{i}^{(k)} = a_{i}^{(k-1)} + \rho_{k} a_{k-i}^{(k-1)} \qquad (i = 1, 2, ...k-1)$$

$$a_{k}^{(k)} = \rho_{k}$$

- (3) k = pで計算を終わります。 k < pの場合には
 - $\Delta_{k} = R_{xx}(k+1) + \sum_{i=1}^{k} a_{i}^{(k)} R_{xx}(k+1-i)$ k+1 kとして、(2)、(3)を繰り返します。
 - FFTを使用してスペクトルの推定を行います。

付録1

5. 包絡線

包絡線は信号をパターン化するのに適しており、減衰波形では包絡線の傾きから減衰率を算出できます。

ピークホールド ピークホールドの解析手順を以下に示します。

(1)解析する波形を整流(全波整流)します

(2) 平滑化微分を行い、ピークを検索します

(3) 求められたピークを直線で結び、間の点を直線補間して求めます。

ヒルベルト変換

信号 S(n)のフーリエ変換の後半でゼロとなる数列を $S(e^{jw})$ とすると、 S(n) が実数列であるためには $S(e^{-jw}) = S(e^{jw})$ となり S(n) は次のように表せます。

 $S(n) = S_r(n) + jS_i(n)$

この複素信号は $S_r(n)$ 、 $S_i(n)$ より包絡線は、

$$\sqrt{S_r^2(n) + S_r^2(n)}$$

として求められます。

$$S_r(n)$$
、 $S_i(n)$ の求め方

 $S_r(n)$ 、 $S_i(n)$ のフーリエ変換を $S_r(e^{jw})$ 、 $S_i(e^{jw})$ とすれば次の式が成り立ちます。

$$S_r(e^{jw}) = \frac{1}{2} \left\{ S(e^{jw}) + S(e^{-jw}) \right\}$$
$$jS_i(e^{jw}) = \frac{1}{2} \left\{ S(e^{jw}) + S(e^{-jw}) \right\}$$

この式により $S_r(e^{jw})$ 、 $S_i(e^{-jw})$ を計算し、各々逆フーリエ変換することにより、 $S_r(n)$ 、 $S_i(n)$ が求まります。

6. 自己相関関数

時系列データでは、時間差 が小さい2点間ではかなり関連性が強く、 が大きくなるにつれて関連性は弱くなってきます。また、時系列データの中に周期データが含まれている場合は、ある一定時間差(周期)毎に類似性が強くなります。

自己相関関数は時間差の関数として表され、時系列データの性質(不規則性の度合)を解析したり、時系列データの中に含まれる周期データをS/N比を改善して検出する目的などに使用されます。 自己相関関数は、パワースペクトルのフーリエ逆変換によって求めることができ、一般に次の式で表されます。

$$R_{xx}(\tau) = \int_{-\infty}^{\infty} P_{xx}(f) e^{i2\pi f\tau} d\tau$$

自己相関関数の性質として、 = 0 で入力信号の2 乗平均に等しい最大値をとります。

以下に自己相関関数の手順を示します。

データ数は2のベキ乗にならない場合、0を付け加える。

FFTの計算を行う。

パワースペクトルの計算を行う。 $|X_k|^2$

逆FFTの演算を行う。

 $R_{rr}(0)$ が1.0となるように正規化する。

7.相互相関関数

相互相関関数では、2つの時系列データにおいて時間差 だけ離れた2点間にどれだけの関連性があるかを求めるもの で、時間遅れの測定から速度や距離を求めたり、伝達経路を決定したりする目的に使用されます。

相互相関関数は、クロススペクトルP_{×Y}のフーリエ逆変換によって求めることができ、一般に次の式で表されます。

$$R_{xy}(\tau) = \int_{-\infty}^{\infty} P_{xy}(f) e^{i2\pi f\tau} d\tau$$

以下に相互相関関数の計算手順を示します。

8.クロススペクトル

クロススペクトルは、2つの時系列データ間における共通な周波数成分の振幅と位相の情報を求めることができます。 各周波数において、振幅値は2つの時系列データの各々の振幅値の積を表し、位相差は2つの時系列データ間の相対的 な位相差を表します。

X 1 (以後 X)のフーリエスペクトルS x の複素共役数 S x ^{*}を、X 2 (以後 Y)のフーリエスペクトル S y とと掛け ることによって得られます。

$$P_{xy} = S_y \cdot S_x^* = (R_y(f) + jI_y(f))(R_x(f) - jI_x(f))$$

= $(R_y(f) \cdot R_x(f) + I_y(f) \cdot I_x(f)) + j(I_y(f) \cdot R_x(f) - R_y(f) \cdot I_x(f))$

また、クロススペクトルは相互相関関数を周波数領域で表したものに対応し、相互相関関数と同様に時間遅れの測定に 応用できます。例えば、波形の伝播速度や伝達経路が周波数に依存している場合には、注目する周波数における位相値 から時間遅れを求めることができます。

以下にクロススペクトルの計算手順を示します。

クロススペクトルを求める。

$$P_{XY} = \frac{\Delta t}{N} (A_X + jB_X) (A_Y + jB_Y)$$
$$= A_{XY} + jB_{XY}$$

振幅値を求める。

X、 Yの振幅値の積(クロススペクトル)

$$|P_{XY}| = \sqrt{A_{XY}^{2} + B_{XY}^{2}}$$

位相差を求める。

X、Yの相対的な位相差(フェーズ)

$$\theta = \tan^{-1} \frac{B_{XY}}{A_{XY}}$$

9. 伝達関数

例えば、電気回路のフィルタ特性といった系の周波数応答特性を系の入出力間の関数として求めるもので、振幅と位相の2つの情報を得られます。

$$H_{xy} = \frac{S_y}{S_x}$$

また、

$$H_{xy} = \frac{S_y \cdot S_x^*}{S_x \cdot S_x^*} = \frac{P_{xy}}{P_{xx}}$$

とも表されます。

伝達関数は、入力のフーリエスペクトルに対する出力のフーリエスペクトルの比で表されます。また、系の入力のスペ クトルに対するクロススペクトルの比としても表されます。 この方法による伝達関数は、

クロススペクトル P_{XY} を用いて計算するため振幅と位相の両方を測定できる

どのような入力に対しても適用できる

といった特徴があります。

伝達関数のフーリエ逆変換はインパルス・レスポンスと呼ばれます。

以下に伝達関数の計算手順を示します。

X (n)、Y (n)にFFTを行う。 また、クロススペクトルを求める。

伝達関数を計算する。

$$H_{XY} = \frac{P_{XY}}{P_X / 2}$$

= $\frac{(A_X A_{Y+} B_X B_Y) + j(A_Y B_X - A_X B_Y)}{A_X^2 B_X^2}$

$$=H_{R}+jH_{I}$$

振幅値を求める。

$$|H| = \sqrt{H_R^2 + H_I^2}$$

位相差を求める。

$$\theta = \tan^{-1} \frac{H_I}{H_R}$$

10.コヒーレンス

伝達関数を求めるとき、系が非線型形と考えられる場合や外乱がある場合、あるいは経路が1つではなく他にも入力源 がある場合などは、系の正しい伝達関数を求めることはできません。

コヒーレンス関数は、入出力の因果関係を表すもので、0~1の値をとります。

$$COHR = \frac{P_{xy} \cdot P_{xy}^{*}}{P_{xx} \cdot P_{yy}} \qquad \qquad x: \lambda$$
 力波形、 y: 出力波形

クロススペクトルの2乗振幅を入力と出力のパワースペクトルの積で割ったものをいいます。

ある周波数におけるコヒーレンス値が1の場合、出力は入力だけによって生じていることになり、0の場合は出力は入 力と全く関係のないことになります。

0と1の中間の値、例えば0.3の時には、出力は着目している入力の影響が0.3で、残り0.7は他の入力、あるいは外乱の影響によるものと考えられます。

このように、コヒーレンス関数は、伝達関数の評価として使用することができ、多入力系においては、各々の入力が出 力に与える貢献度(寄与率)を求めることができます。 伝達関数を測定する場合、必ずコヒーレンス関数も求めることを勧めます。

以下に「クロススペクトル」、「伝達関数」、「コヒーレンス」を求める際の共通する計算手順を示します。

(データ数が2のベキ乗に一致しなければ、ゼロのデータを付け加える)

x (n)、y (n)の平均値を求める。 (X:入力波形 Y:出力波形)

 $X(n) = x(n) - \overline{x}$ 、 $Y(n) = y(n) - \overline{y}$ を求める。

X(n)のFFTを行う ... $A_{_X}+jB_{_X}$ (実数部: $A_{_X}$ 虚数部: $B_{_X}$)

Y(n)のFFTを行う ... $A_Y + jB_Y$ (実数部: A_Y 虚数部: B_Y)

Xのスペクトルを求める $P_{X} = 2 \times \frac{\Delta t}{N} \left(A_{X}^{2} + B_{X}^{2} \right)$

Yのスペクトルを求める $P_{Y} = 2 \times \frac{\Delta t}{N} \left(A_{Y}^{2} + B_{Y}^{2} \right)$

付録 1

11.微分・差分

微分は、位置データから距離を求め累積し、その結果を微分して速度を求め、更に微分して加速度を求めることがで きます。

$$D_{i} = \frac{Y_{i} - Y_{i-1}}{\Delta t} \qquad (但しD_{0} = 0)$$

Δt:データ間隔

差分は、ある時点のデータから1つ前のデータを差し引く処理です。

$$D_i = Y_i - Y_{i-1}$$
 (但し $D_0 = 0$)

12.積分

時系列データと時間軸に囲まれた部分の面積を求めることにより、時系列データの振幅値の変動の大きさを表します。 これには、波形の面積計算と振幅の総和の2種類があります。また積分にはデータの符号を考慮しない絶対値の積分と、 符号を考慮した積分があります。

積分

符号を考慮した積分は、例えば加速度センサーをつけた部位のデータを積分することにより速度を求め、さらに 積分すると累積の距離が求まります。

(1) 面積積分

$$I = \int_0^t x(t) dt$$

(2)振幅値の総和(振幅積分)

$$I = \sum_{i=0}^{N-1} xi$$

積分(絶対値)

符号を考慮しない積分は、筋電図のように筋放電量を問題にする場合などに用います。

(1) 面積計算

$$I = \int_0^t |x(t)| dt$$

サンプリング間隔が異なる波形同士でも積分値を比較することができます。 単位は、volt・sec あるいは、mvolt・msec といったものになります。

(2) 振幅値の総和(振幅積分)

$$I = \sum_{i=0}^{N-1} |xi|$$

サンプリング間隔が等しい波形同士で積分値を比較する場合に用います。 単位は、volt あるいは、mvolt といったものになります。

13.デジタルフィルタ

測定したデータに何らかの処理を施して、ある信号の測定値を得ることを「デジタルフィルタ処理」といいます。 BIMUTAS[®]では、次の4種類のデジタルフィルタを使用して任意の周波数の信号を取り出すことができます。

低域通過フィルタ:LPF(Low Pass Filter) 低い周波数成分だけを取り出します

 $BIMUTAS^{®}$ におけるローパスフィルタは、通過域が周波数 = 0からf0迄で、f0を指定します。

高域通過フィルタ:HPF(High Pass Filter)

高い周波数成分だけを取り出します

BIMUTAS[®] におけるハイパスフィルタは、通過域が周波数f0以上で、f0を指定します。

帯域通過フィルタ: B P F (Band Pass Filter)指定した範囲の周波数成分だけを取り出します

BIMUTAS[®] におけるバンドパスフィルタは、通過域が周波数f1からf2迄で、f1とf2を指定します。

帯域阻止フィルタ: B S F (Band Stop Filter)指定した範囲の周波数成分だけを除きます。

BIMUTAS[®] におけるバンドストップフィルタは、阻止域が周波数f1からf2迄で、f1とf2を指定します。

デジタルフィルタには、インパルス応答の継続時間に着目して、継続時間が有限のインパルス応答を有するFIR (Finite Impulse Responce)フィルタと、継続時間が無限のインパルス応答を有するIIR(Infinite Impulse Response)フィルタがあります。IIRフィルタは、急峻な遮断特性を持つフィルタを作るのにFIRフィルタより適 しており、同じ特性のフィルタを作る場合、はるかに低い次数で構成できます。

BIMUTAS[®]のデジタルフィルタは、バタワース特性あるいはチェビシェフ特性を持つIIRフィルタです。

バタワース特性

通過域が平坦で通過域のエッジ周波数の直前から単調に減衰する為、最大平坦型と呼ばれます。

チェビシェフ特性

通過域で等リップルを許す事により遮断特性を急峻にしたものです。

通過域のエッジ周波数

入力信号が指定した程度(通過域の減衰量)は減衰するが、ほぼ入力信号そのままの出力となるエッジ周波数を言います。

・BIMUTAS[®] での通過域のエッジ周波数の既定値は、

<u>サンプリング周波数(単位:Hz)</u>x0.2(角周波数で0.2) 2

・*BIMUTAS[®]*での通過域の減衰量の既定値は、3dBです。

阻止域のエッジ周波数

入力信号が指定した量(阻止域の減衰量)だけ減衰して出力信号が出てくるエッジ周波数を言います。

・*BIMUTAS[®]*での阻止域のエッジ周波数の既定値は、

・BIMUTAS[®] での阻止域の減衰量の既定値は、27dBです。

付録 1

付録2:テキストファイルフォーマット

弊社製品で入出力可能なテキストデータは、「キッセイコムテック共通テキストファイル」です。 「キッセイコムテック共通テキストファイル」フォーマットを以下に示します。

弊社製品では、テキスト出力:「キッセイコムテック共通テキストファイル」メニューから

テキスト入力:「インポート」メニューの「キッセイコムテック共通テキストファイル」から テキスト入出力を行います。

<u>1.ファイル仕様</u>

拡張子	КСТ
ファイル構成	可変サイズの1ファイル構成
収録チャネル数	1~512 チャネル
最大収録データ点数(チャネル当り)	無制限
データセパレータ	「 , 」、タブ文字、スペース文字
データ部格納データ	時系列データ、周波数解析データ、%データ、電位データ
文字コード体系	シフト JIS

<u> 2 . データ構造</u>

データは先頭9行に収録データの情報を記述し、10行目以降からデータ群の並びとなる

1 行目	認識文字列	データ識別用の「"」で括られた認識文字列。	
		KC_BIO_TEXTDATA(半角大文字)を記述	
2 行目	データセパレータタイプ	データセパレータのタイプを示す「"」で括られた一桁の数値	
		0:「 , 」 1:タブ文字 2:スペース文字	
3 行目	データタイプ識別コード	データ群の横軸タイプを示す「 " 」で括られた一桁の数値	
		0:時系列データ 3:電位データ	
		1:周波数データ -1:その他のタイプ	
		2:%データ	
4 行目	収録チャネル数	収録チャネル数。「"」で括る	
5 行目	チャネル当たりのデータ点数	チャネル当たりのデータ点数。「 " 」で括る	
6 行目	横軸間隔		
		全チャネル共通の横軸間隔を記述する	
7 行目	チャネル名称	各チャネル名称は「"」で括られ、データセパレータ(2 行目で指	
		定)で区切られる。チャネル名称のないチャネルも必ず記述する	
8 行目	チャネルコメント	各チャネルコメントは「"」で括られ、データセパレータ(2 行目	
		で指定)で区切られる。チャネルコメントのないチャネルも必ず記	
		述する	
9 行目	データ単位	横軸 , チャネル1 , チャネル2、…チャネルnの順番で記述。各デ	
		ータ単位は「"」で括られ、データセパレータ(2 行目で指定)で	
		区切られる。データ単位のないチャネルも必ず記述する	
10 行目以降	データ群	横軸 , チャネル1 , チャネル2、…チャネルnの順番で記述。各デ	
		ータはデータセパレータ(2行目で指定)で区切られる。横軸値は、	
		6 行目の横軸間隔値([H z])の逆数値分づつ増加する	

3.弊社製品での制限事項

BIMUTASII, ATAMAPII, EPLYZERII でのテキストデータの読み込みについて

1)3行目「データタイプ認識コード」は、「0:時系列データ」である必要があります。

- 2) 9 行目「データ単位」にて、先頭「横軸」は「msec」である必要があります。10 行目以降「データ群」においても、先頭「横軸」は msec 単位で記述されている必要があります。 msec 以外のデータの場合は、表計算ソフトなどで msec 単位に換算して記述してください。
- 3) 10 行目以降「データ群」にて、先頭の「横軸」値を Omsec より大きい数字を開始時間として、読み込むことができません。

Omsec より大きい数字を開始時間としている場合は、表計算ソフトなどで Omsec を開始時間にしたデータに換算して ください。

4) 10 行目以降「データ群」にて、5 行目「チャネル当たりのデータ点数」に書かれた点数以上の改行が存在すると読み込むことができません。

<u>4.ファイル例</u>

【例】以下の条件でのファイル例

入力チャネル数:3CH

チャネル当たりのデータ点数:10点

横軸間隔:1msec すなわち、サンプリング周波数は1000Hz

1 行目	"KC_BIO_TEXTDATA"	認識文字列(固定)
2 行目	"0" 	コンマは 0、タブは 1
3 行目	"0" 	- 時系列データを表す 0(固定)
4 行目	"3" ◀	入力チャネル数
5 行目	"10" ◄	- データ数
6 行目	"1000" 	サンプリング周波数
7 行目	"CH1", "CH2", "" 🗲	チャネル毎の名称
8 行目	"1CHチャネルコメント", "", "" ◀──	チャネル毎のコメント
9 行目	"msec","µV","mV","" ◀	チャネル毎のデータ単位(始めは必ず msec)
10 行目	0,-10.5,0,20.5 ◄	-データ(始めは必ず msec での横軸データ)
	1,-11.5,0,21.5	
	2,-14.3,0,22.5	
	3,-15.5,0,23.5	
	4,-9.2,0,24.5	
	5,-7.0,0,25.5	
	6,-3.2,0,26.5	
	7,0.1,0,27.5	
	8,1.2,0,28.5	
	9,2.2,0,29.5	