脳波の解析

2-1) 帯域別に含有量・含有率を算出する

含有量を算出し、ある事象における帯域毎や部位毎の比較を行います。 また、含有率を算出し、別の被験者(対象)や別の事象と定性的な比較を行います。

含有量を使用した場合、対象により絶対値が異なるため、別の被験者(対象)や別の事象と定性的な 比較ができません。

< 操作の流れ > 脳波の生波形を表示する。 チャネル全体または一部を選択する。

FFT を行う。

- 1. 含有率・量の時系列変化を求める場合
- 2. 任意の範囲における含有率・量を求める場合

「コマンド」メニュー「帯域設定」を選択する。 含有率または含有量を算出する。 タブ領域内の含有率または含有量をコピーし、表計算ソフトへ貼り付ける。

脳波の生波形を表示する。

チャネル全体または一部を選択する。

ツールバーの選択範囲モードを選び、波形上で選択範囲を設定します。

例:チャネル全体を選択範囲とする場合

ツールバーで「チャネルの全範囲」ボタンを押します。

波形上でクリックすると、そのチャネル全体が選択されます。

■ BIMUTAS II ■ 77(1ルD 単 ■ ■ ● 3 13 支 23才	- <mark>(Rowデータ sample)</mark> 国位 表示() コマンド(150 回 (55) 日 日 157 月	0 ##6 	mie -***		6 - 6 ×
01 -1.674 uvelt	100.00- 10.00- 10.00- 10.00- 20.00- -20.00- -40.00- -60.00- -100.00-	nuun	phalwalac	wah haan	nymelnerst.
11.270	5,00	0	7,500	10.0	8 + •
マーク 3444 選択区開設: 0 支		↓ #0 (# (# (# (# (# (# (# (# (# (# (# (# (#	イートマーイ Philli サンプルグ起波数:	200.0Hz	

FFT を行う。

1. 含有率・量の時系列変化を求める場合

「解析」メニューの「周波数解析」-「時系列解析」から「FFT」を選択します。

🦥 BIMUTAS II – [Rawデータ sample]			
🔡 ファイル(E) 編集(E) 表示(V) コマンド(Q)	解析(A) 加工(P)	ッール(M) ウインドウ(W) ヘルプ	<u>(H)</u> –
▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	周波数解析 積分 微分	► FFT(<u>F</u>) ► MEM(<u>M</u>) ► AR(<u>A</u>)	
01 -4.158 100.00- 80.00-	自己相関(<u>A</u>) 相互相関(<u>N</u>)… コヒーレンス(H)	時系列解析 FFT(E)	 <u>M</u>)

「時系列解析(FFT)」ダイアログの設定を行います。

MARKEUTD		🦉 平均回数:	ダイアログ トの"1エポックデータ時間"が
		FFT ポイント数: 窓関数: スペクトル単位:	解析する分析時間になるように設定します。 128~1024が一般的です。 ハミングまたはハニングが一般的です。 パワー
000000 - 3000 00000 - 200 124-27-3000 0000 - 200	選択範囲開 7-135		頂から約 10sec 毎に FFT されます。

注: 平均回数と FFT ポイント数の設定方法 脳波の場合、一般的に FFT ポイント数は 128~1024 点に設定します。 平均回数はダイアログ上の"1エポックデータ時間"が、解析する分析時間になるように設定します。 詳しくは、「4-1) FFT ポイント数とサンプリング周波数」 「4-2) FFT ポイント数と平均回数の関係」を御覧下さい。

FFT 結果が新しいウィンドウに表示されます。

EMULTASI - [FFT(019-) 0sta2] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	×
9.000xec 0.00 10.740xec 10.00 20.400xec 0.00 40.500xec 0.00 40.500xec 0.00 40.500xec 0.00 51.7200xec 10.00 51.400xec 10.00 71.500xec 10.00 71.500xec 10.00	4
100,000 10,000 10,000 10,000 10,000 10,000 10,000	+
マーク 含有事 含有量 Median Mean ビーク ビックアップ ビーク周波波 スペクトル価値 標準 チャネル数:20 Singature FFTホイント税:512 加留同時:4 空間時:1/12ング	•

2. 任意の範囲における含有率・量を計測する場合

「解析」メニューの「周波数解析」から「FFT」を選択する。

🌆 BIMUTAS	Ⅱ - [解	析データ	Data2]				
🔡 ファイル(E)	編集(<u>E</u>)	表示♡	コマンド(<u>C</u>)	解析(<u>A</u>)	加工(2)	ツール(M)	ウインドウ🔙
2 D A	XB	el ta l		周波数	解析	▶ FF1	r(E)
	00 -			積分		ME	M(M).

「FFT」ダイアログの設定を行います。

別法教際約(FFT) X 解析の設定 パラメータ展歴の ご聞の指定方法① ・ ○ FFTポイント数(2) 512 宮朝敏(他) パシブグ スペクトル単位(県) パワー 「 パンパスペクトル単位(県) 1000000 12 ・	区間の指定方法: 窓関数: スペクトル単位:	脳波解析では、 512 ~ 1024 点に 設定するのが一般的です。 ハミングまたはハニングが一般的です。 パワー
周波数分解散: 0.391 Hz 選択範囲の	点数 2001 点の内、 先	頭 512x3=1536 点分が FFT されます。
512点×3回 キャンセンル		

FFT 結果が新しいウィンドウに表示されます。

NE BINUTAS E	- [FFT(/(1)-) Data2]	
🚼 771NO 🖉	課心 表示心 コマンド心 解析因 ツール包 ウインドウ図 ヘルブゼ	- 0 ×
		1
15 女 23才 (0ヶ月	
01 0.011 welt"2	16.00- 12.00- 8.00- 4.00- 0.00-	
99.609 Hz	9.886 30.809 88.886	\$0.000 ···
7-7 +n=	· 全本員 Bedian Bean ビーカ ビックアッゴ ビーク即き時 フックトリア目	a lana a la
2 394	8 4 2 WATER WEET C - 7 C - 7 C - 7 80 KM X - 7 F MOR	
チャネル数:1 分解	総:036Hz FFTポイント級:512 加算回級:3 定規級:ハミング	

「コマンド」メニュー「帯域設定」を選択する。

設定したい帯域名称と、周波数帯域を入力し「OK」ボタンを押します。デフォルトでは、脳波の6帯域が設定されています。

带系统定					
带烟鼓(10):	4		帯域数を	変更して	から名称と周波数を入力します。
	带绒名	带城道		带城色	
- 帯頬1 (j)	delta	2000 Hz IJLE	4.000 Hz 未満	· ·	
帯城2 ②	theta	4.000 Hz 以上	8.000 Hz 未満	•	
帯城3 ③	alpha	8.000 Hz LLL	13.000 1セ 未満	-	
帯城4(4)	beta	13.000 Hz LLL	30.00(Hz 未満	•	
帯城6 ⑤	beta1	13.000 Hz LLL	20.000 比未満		
帯城6 ⑥	beta2	20.000 Hz LUE	30.000 比未満		
帯城7(2)		He KLE	Hz 未満		
帯城8 ②		He KLE	Hz 未満		
帯城9 (2)		HEULE	Hz 未満		
帯域10 ①		HEULE	Hz 未満		
		ОК ++;	ンセル		

含有率または含有量を算出する。

「コマンド」メニューの「含有率」または「含有量」を選択します。

🦥 BIMUTAS II – [FFT(パワー) Data2]						
💾 ファイル(E)	編集(<u>E</u>)	表示♡		解析(<u>A</u>)	(<u>M</u>	
	よ自		含有率 含有量	6	1.00	

含有率の場合計算方法を指定し、「OK」ボタンを押します。

含有平	
分母	帯域の総和で行うのが一般的です。
 (・)帯場の総和(2) () 任衆域の総和(A) 	
Hz - Hz	
0K =++>tz//	

タブ領域を拡大して、計測データを表示させます。

タブ領域が広げられ、含有率が計測されていることがわかります。

タブ領域内の含有率または含有量をコピーし、表計算ソフトへ貼り付ける。 タブ領域内で右クリックして、「すべて選択」を選びます。

タブ領域内が選択された(色反転している)ことを確認した後で、再びタブ領域内で右クリックして、「コピー」を選びます。

表計算ソフト(例:Excel)を起動します。

🔀 M	icrosoft Ex	cel – Book1			
8	ファイル(<u>E</u>) 編	諜(E) 表 示	⊻ 挿入Φ	(回)た書	ツール① デ
	🖻 🔚 🗠	📲 🎽 MS P	ゴシック	• 11 •	в <i>I</i> <u>U</u>
	A1	•	f _x		
	A	В	С	D	E
1					
2					

表計算ソフト上で「貼り付け」を選びます。

🔀 Microsoft Excel – Book1						
	ファイル(圧)	編	集(E) 表示(⊻) 挿入(I) 書式(0)		
D	🛩 🖬 🕨	ю	元に戻せません(U)	Otrl+Z		
	A1	U	繰り返しできません(<u>R</u>)	Ctrl+Y		
	A	*	切り取り(T)	Ctrl+X		
1			⊐Ľ−©)	Ctrl+C		
2		m.	Office カリップポード(P)			
3		-	Once 99977 - [AD/			
4		e	貼り付け(P)	Ctrl+V		
5			TET & BERGH	(2)		

含有率が表計算ソフトに表示されました。グラフ等の加工を行うことができます。

Microsoft Excel - Book1						
8	ファイル(<u>F</u>) 編集	(E) 表示(⊻) 挿.	入邸 書式(2)	ツール(工) データ	(型) ウィンドウ₩)	\sim
	🚔 🔚 🗠 + ?	MS Pゴシック	• 11 •	B <i>I</i> <u>U</u> ≣	= = = 9	%
H2 🕶 🏂						
	A	В	С	D	E	
1		delta	theta	alpha	beta	
2	01	6.731	24.378	63.861	5.029	

BIMUTASII を使用した解析手順