脳波の解析

2-2) 2波形を比較する

2つの事象や、2つの波形の変化を見やすいようにグラフ化します。

脳波の2波形を比較するためには、2つの手段があります。
 1. それぞれの波形における周波数成分の変化を見る場合……………………………………………………………4-2-9
 2.2つの波形における周波数成分の差を見る場合………………………………………………4-2-14

1. それぞれの波形における周波数成分の変化を見る場合 脳波の2波形について、それぞれ含有率を計測し、その値を比較します。

< 操作の流れ >
脳波の生波形を表示する。
波形の一部を、2箇所選択する。
「解析」メニュー「周波数解析」から「FFT」を選択する。
「コマンド」メニュー「帯域設定」を選択する。
含有率を算出する。
タブ領域内の含有率をコピーし、表計算ソフトへ貼り付ける。

脳波の生波形を表示する。

波形の一部を、2箇所選択する。

ツールバーの選択範囲モードを選び、波形上で選択範囲を設定します。

例:2部位における、同時刻で同じ時間幅を選択範囲とする場合 ツールバーで「任意幅の区間の全チャネル」ボタンを押します。

波形上でドラッグすると、2チャネル分の選択範囲が表示されます。

「解析」メニュー「周波数解析」から「FFT」を選択する。

🦥 BIMUTAS II – [解析データ Data2]							
📙 ファイル(E)	編集(E)	表示⊙	コマンド(<u>C</u>)	解析(<u>A</u>)	加工(12)	ツール(<u>M</u>)	ウインドウ()
BIRIA	XB		n m 🖬	周波数	解析	► FF1	(E)
				積分		ME	M(<u>M)</u>

「FFT」ダイアログの設定を行います。

期決技術が(FFT) メ 解析の設定 「「ラメータ展歴空」 ご聞の指定方法① ・ ご用の指定方法① ・ ご用の指定方法① ・ ご用いたいます。 ・ ごの回転 ・ パラー、 ・ 「いたパスペクトル単位山」 ・ 1000000 トセ	区間の指定方法: 窓関数: スペクトル単位:	脳波解析では、 512 ~ 1024 点に 設定するのが一般的です。 ハミングまたはハニングが一般的です。 パワー
周波数分解散: 0.391 Hz 0 2001 点 選択範囲の	点数 2001 点の内、 先	頭 512x3=1536 点分が FFT されます。
512. <u>6</u> × 30 ++c)tzµ		

 注:FFT ポイント数の設定方法 脳波の場合、一般的に FFT ポイント数は 128~1024 点に設定します。
 FFT ポイント数 < 全データ点数の場合: データ先頭から FFT ポイント数分のデータが FFT 解析に使用されるため、データ後半は FFT 結果 に反映されません。
 FFT ポイント数 > 全データ点数の場合: FFT するために足りないデータは、自動的に 0 で埋められます。
 詳しくは、「4-1) FFT ポイント数とサンプリング周波数」を御覧下さい。

4-2-10 2波形を比較する

2波形分の FFT 結果が新しいウィンドウに表示されます。

REMUTAS E - E	FT(/(9-) Data2]		
🚼 ファイル(2) 編集() 義元(1) コマンド(1) 解析(6)	シール圏 ウインドウ制	∧#709 - 8 ×
		<u> </u>	
NS 女 23才 0ヶ)			
Ep1 0.015 uvolt"2 0.013 uvolt"2	2.00- 0.00- 20.00- 10.00- 0.00-		
99,609	0.000 50.	635 65.65	50,000
Hz	4		• <u></u>
マーク 含有率 含有	2量 Median Mean ピーク t	ビックアップ ビーク彫刻	と、スペクトル面積 標準・・・
し チャネル数:2 分解鏡:0	39Hz FFTポインH数:512	加算回数:2 定期3	たいとう

「コマンド」メニュー「帯域設定」を選択する。

設定したい帯域名称と、周波数帯域を入力し「OK」ボタンを押します。初期値は、脳波の6帯域が設定されています。

带机铁定 带机铁心:	4 1		帯域数を変更して	から名称と周波数を入力します。
	带纸名	攀城值	蒂城色	
帯城1(1)	delta	2000 Hz 以上	4.000 Hz 未満	
1978(2 Q)	theta	4.000 Hz SZ.E	8.000 Hz # A	
1978(3 Q)	alpha	8000 Hz 1/LE	13.000 Hz 未満	
40.000 (0)	beta	13.000 Hz LUE	30.00C Hz #3	
参減6 む	beta1	13.000 Hz LUE	20.000 股未満	
帯地6 (2)	beta2	20.000 Hz LJL	30.000 版未満	
帯城7 ①		He 以上	Hz 未満 📃 🗾	
帯城8 (8)		Hz 以上	Hz 未満 ■	
帯城9 (2)		He 以上	hz 未満 📃 🗾 🗸	
帯城10 ⑫		Heille	Hz 未満 📃 🗉	
		0K ++>	ยเ	

含有率を算出する。

「コマンド」メニュー「含有率」または「含有量」を選択します。

🦥 BIMUTASI - [FFT(パワー) Data2]								
マンド(<u>C</u>)	解析(A)	ツール(<u>M</u>						
含有率… 今有量	<u>k</u>							
	ataz」 マンド(①) 含有率… 含 有量	ataz」 マンド(C) 解析(A) 含有率 含有量 v						

含有率の場合計算方法を指定します。

	▼ 帯域の総和で行うのが一般的です。
○ 任意域の総和(A) Hz - Hz	
OK キャンセル	

タブ領域を拡大して、計測データを表示させます。

タブ領域が広げられ、含有率が2波形分計測されていることがわかります。

タブ領域内の含有率をコピーし、表計算ソフトへ貼り付ける。

タブ領域内で右クリックして、「すべて選択」を選びます。

タブ領域内が選択された(色反転している)ことを確認した後で、再びタブ領域内で右クリックして、「コピー」を選びます。

マーク	含有率	含有	貢量 Median Mean	「ピーク」t	ビックアップ
	Fp1 01		delta 元に戻す(U)	theta	alp 36.6: 60.0
			切り取り(T) コピー(C) 貼り付け(人)		
<		_	削除(<u>D</u>) すべて選択(<u>A</u>)		
チャネル数 :	2 分解	能:(右から左(こ読む(R)		加算回数

表計算ソフト(例:Excel)を起動します。

🔀 Microsoft Excel – Book1								
8	ファイル(<u>E</u>) 編	諜(E) 表 示	⊻ 挿入Φ	書式(0) り	ッール① デ			
	🖆 📕 😂	📲 🎽 MS P	ゴシック	• 11 • J	B <i>I</i> <u>U</u>			
	A1	-	f _x					
	A	В	С	D	E			
1								
2								

表計算ソフト上で「貼り付け」を選びます。

🗙 Microsoft Excel – Book1							
8	ファイル(<u>F</u>)	編	集(E) 表示(⊻)	挿入仰	書式(0)		
	🛩 🔛 🕨	5	元に戻せませんし		Otrl+Z		
	A1	U	繰り返しできません	ω <u>(R</u>)	Ctrl+Y		
	A	Ж	切り取り(工)		Ctrl+X		
1		8	⊐ピー(<u>©</u>)		Ctrl+C		
2		G.	Office クリップボー	-ド(<u>B</u>)	-		
4		8	貼り付け(P) _N		Ctrl+V		
5			形式专题切论机	En (t) (+ (s	3		

2波形のそれぞれの含有率が表計算ソフトに表示されました。グラフ等の加工を行うことができます。

💌 м	🔀 Microsoft Excel – Book1								
8	ファイル(E)	編集(<u>E</u>)	表示(⊻) 挿入	◎ 書式◎) ツ	ール(<u>T</u>) データ(<u>D</u>) ウィンドウ(W) へ			
	🛩 🖬 🕨	• • *	MS Pゴシック	• 11 • B	J <u>U</u> ≣ =	E = 🖻 🦻 %			
	I2	-	fx		-				
	A	4	В	С	D	E			
1			delta	theta	alpha	beta			
2		Fp1	22.077	23.32	36.62	17.984			
3		01	10.783	22.559	60.018	6.64			
А									

2.2 つの波形における周波数成分の差を見る場合

脳波の2波形にそれぞれ含まれる周波数成分の差を表示する解析方法です。

< 操作の流れ > 脳波の生波形を表示する。 波形の一部を、2箇所選択する。 コヒーレンスを算出する。

脳波の生波形を表示する。

波形の一部を、2箇所選択する。

ツールバーの選択範囲モードを選び、波形を色反転させ選択範囲を設定します。

注: 2箇所の選択範囲は、同じ時間幅(同じデータ点数)である必要があります。

例:2部位における、同時刻で同じ時間幅を選択範囲とする場合

ツールバーで「任意幅区間の全チャネル」ボタンを押します。

波形上でドラッグすると、2チャネル分の選択範囲が表示されます。

コヒーレンスを算出する。

「解析」メニューの「コヒーレンス」を選択します。

🏧 BIMUTAS II – [Rawデータ sample]									
📙 ファイル(E) 編	潗∈) 表示∨)	コマンド(<u>C</u>)	解析(<u>A</u>)	加工(12)	ツー				
<mark>▶■●</mark> <u>》</u> KS 女 23才 0	周波数 積分 微分 自己相	割波数解析 責分 数分 5 ⊐ #88(A)							
<u>Fp1</u> -1.643 uvolt	20.00- 10.00- 0.00-	1 WWWWW	日 相互相 コヒーレ クロスス・	₩1000 関(N) ンス(H) ペクトル3 <u>0</u>).					

「コヒーレンス」ダイアログを設定し、「OK」ボタンを押します。

31-6574	区間の指定方法:	512~1024 点に
第第7-3 第一次 第二次 第二次	窓関数:	設定するのが一般的です。 ハミングまたはハニングが
		一般的です。
	選択範囲の点数 1175 点の内、	
	先頭 512x2=1024 点 	らかが FFT されます。
2波形を選択してから、必ず「登録」ボタンを押して下	さい。	

注: コヒーレンスを行うために、平均回数を2回以上に設定する必要があります。

値が1であれば、その周波数において2波形が同じであることを示します。

BIMUTASII を使用した解析手順