筋電図の解析

1-3) 筋放電を定量化する

2つの事象について比較をしたり、経過時間による筋放電量変化をグラフ化するために、筋放電を定 量化します。

筋放電を定量化するには、2つの方法があります。

1.	積分の時系列変化を表示し定量化する4-1-11	
2.	積分値を直接求める	

積分の時系列変化を表示し定量化する
 波形を自動的に全波整流し、積分します。経過時間による変化をグラフで表示します。

< 操作の流れ > 筋電図の生波形を表示する。 解析する波形の一部または全体を選択する。 「解析」メニューの「積分(符号なし)」を選択する。 「ノーマル」ダイアログを設定する。 積分(ノーマル)が新しいウィンドウに表示される。 「コマンド」メニューの「データピックアップ」を選択する。 タブ領域に積分値が表示される。

解析する波形の一部または全体を選択する。 ツールバーで選択区間モードボタンを押します。

例:フリーモードで選択する場合、「フリー範囲」ボタンを押します。

月	「シリー範囲」

波形範囲をドラッグすると、波形に選択区間が表示されます。

「解析」メニューの「積分(符号なし)」を選択する。

🌆 BIMUTAS II - [解析データ Data2]				
📙 ファイル(E) 編集(E) 表示(V) コマンド(Q)	解析(A)加工(P)	ツール(型) ウインドウ(型)		
≤∎⊜∡⊾€ѣ⊡⊞∋	周波数解析 積分	▶ ## ■ ■ ▶ 符号なし(Q) 、		
Hanako Kissei 女 31才 6ヶ月 2003.05.28 コメント挿入しました。	微分 自己相関(A)	符号あり(ら) が		

「ノーマル」ダイアログを設定する。

「ノーマル」タブをクリックして前面に表示させた後、以下を設定して「OK」ボタンを押します。

積分(符号なし)			2 🛛
TTY WWW	· タイムリセット		
解析種類(A)	面積積分	*	
		OK	キャンセル

解析種類: 面積積分または振幅積分 被験者同士で波形を並べて観察するためには、 解析種類を揃えて行う必要があります。

振幅積分と面積積分の算出方法については、ヘルプを御覧下さい。

積分(ノーマル)が新しいウィンドウに表示される。

No REMUTAS II - (鉄分(ノーマル) Data2)	
🚼 ファイルビ 編集化 表示(い) コマンド(い) 解析(は) 加工化 ツール(他) ウインドウ(他) ヘルプゼ	9 - 0 ×
PRO ERE PROVINCE SOUTH	
Hanako Kissei 女 21才 8ヶ月 2003.05.28 コメント挿入しました。	
15(1ec/b6) volt-asec 800.00- 400.00- 200.00- 0.00-	
12.434 5.555 4.655 8.655	12.000 +
マーク 潮時 回時直線 ビックアップ 数値リスト	
2 確認回題時: 0 選択チャネル時: 0 チャネル数:1 サンテルング取決時:1000.0Hz	

「コマンド」メニューの「データピックアップ」を選択する。

🦥 BIMUTAS II - [積分(ノーマル) Data2]			
📙 ファイル(E) 編集(E) 表示(V)	<u>コマンド(©)</u>	解析(<u>A</u>)	加工低
	マーク 潜時		*
Hanako Kissei 女 31才 6ヶ月 2003.05.28 コメント挿入しまし†	回帰直線	ታም ማግ (P)	•
15LlegEMG -	数値リスト		Þ

波形上の積分値を求める点にマウスを合わせ、クリックします。

タブ領域に積分値が表示される。

タブ領域を拡大して、計測データを表示します。

タブ領域が広げられ、積分値が計測されていることがわかります。 同様に、別の積分結果から積分値をデータピックアップして数値を比較します。

筋放電を定量化する 4-1-13

2. 積分値を直接求める

波形の面積積分を行い、その値を直接算出する方法です。

< 操作の流れ > 筋電図の生波形を表示させる。 解析する波形部分を選択する。 「コマンド」メニューの「区間面積」-「選択範囲」を選択する。 タブ領域に積分値が表示される。

解析する波形部分を選択する。

ツールバーで選択区間モードボタンを押し、波形を選択します。

例:フリーモードで選択する場合、「フリー範囲」ボタンを押します。

月	「シリー範囲」

波形範囲をドラッグすると、波形に選択区間が表示されます。

4-1-14 筋放電を定量化する

🦥 BIMUTAS I – [解析データ Data2]			
📙 ファイル(E) 編集(E) 表示(V)	コマンド(C) 解析(A)	加工(P) ツール(M) ウインドウ(
	マーク 潜時		
Hanako Kissei 女 31才 6ヶ月	区間面積	▶ バーカーソル区間(<u>C</u>)	
2003.05.28 コメノト挿入しまし/	平均値	▶ マーク区間(<u>M</u>)	
<u>10L168EMG</u> 2.00-11	ピーク値検出	▶ 選択範囲(S)	
1.60-	標準偏差	► <u>K</u>	

「コマンド」メニューの「区間面積」-「選択範囲」を選択する。

タブ領域に積分値が表示される。

タブ領域を拡大して、計測データを表示させます。

タブ領域が広げられ、区間面積 [積分値] が計測されていることがわかります。

同様に、別の波形から積分値を算出して数値を比較します。

BIMUTASII を使用した解析手順