<u>筋電図の解析</u>

1-4) MVC(最大随意収縮)で比較する

個人間では、単なる積分値などの絶対量を用いて比較はできません。そのために MVC を用いて最 大収縮からの比率を求め、筋放電を比較します。

100%MVCを用いて比率を求めることで、個人間の比較が可能になります。

<操作の流れ>

- ↓ ①100%の力を込めて記録した、筋電図の生波形を表示する。
- ↓ ②筋放電の強い区間を選択する。
- ↓ ③「加工」メニューの「整流」-「全波整流」を選択する。
- ↓ ④「コマンド」メニューの「ピーク検出」または「平均値」を選択して、値をメモする。
- ↓ ⑤実際の筋電図の生波形を表示する。
- ↓ ⑥「解析」メニューの「波形演算」-「単項演算」を選択し、メモした値を入力する。
 ⑦縦軸が比率になって表示される。

①100%の力を込めて記録した、筋電図の生波形を表示する。

この時点で基線がずれている場合は、ヘルプの「加工」-「基線算出」をご覧ください。

②筋放電の強い区間を選択する。

ツールバー「フリー範囲」ボタンを押します。

月	りリー範囲

波形範囲をドラッグすると、波形に選択区間が表示されます。

③「加工」メニューの「整流」-「全波整流」を選択する。

🍇 BIMUTAS II – [Rawデータ 拮抗筋EMG01]										
🔡 ファイル(E) 編集(E) 表示(V) コマンド(C) 解析(A)	加工(P) ツール(M) ウインドウ(W) ヘルプ(H)									
	7-1ルタ 2-11月日日 2-11月1日日 2-11月1日 2-11月11日 2-11月111日 2-11月1111111111111111111111111111111111									
	整流 ▶ 全波整流(E)									
R前脛骨筋 -0.083 2.75-	基線算出 ▶ 半波整流(プラス)(P) データ反転(I) 半波整流(マイナス)(M)									

④「コマンド」メニューの「ピーク検出」または「平均値」を選択して、値をメモする。

ツールバーで「全選択」ボタンを押し、波形を全選択します。

	6 0 /?				
全範囲を選択します。					

最大値を取得するときは「コマンド」メニューの「ピーク検出」-「選択範囲」を選択します。 また、平均値を取得するときは「コマンド」メニューの「平均値」-「選択範囲」を選択します。

タブ領域を拡大して、計測データを表示します。

タブ領域が広げられ、最大値または平均値が計測されていることがわかります。

最大値を取得する場合は[ピーク]タブの「Upper-Value」、平均値を取得する場合は[平均値]タブ値をメモします。

100%MVC であれば、メモした数値をそのまま使用します。

⑤実際の筋電図の生波形を表示する。

この時点で基線がずれている場合は、ヘルプの「加工」-「基線算出」をご覧ください。

⑥「解析」メニューの「波形演算」-「単項演算」を選択し、メモした値を入力する。

ツールバーで「全選択」ボタンを押し、波形を全選択します。

	R
全範囲を選択します。	

「解析」メニューの「波形演算」-「単項演算」を選択します。

ेेेेे BIMUTAS I → [Rawデータ 拮抗筋EMG01]								
📇 ファイル(E)	編集(E)	表示(⊻)	コマンド(C)	解析(<u>A</u>)	加工(円)	ツール(<u>M</u>)	● ウインドウ(型)	
68	X 🗈	e 4	•••	周波数 積分	解析	\$ <u></u>	- 💷 🖸	
				微分 自己相	関(A)	•		
<u>B前脛骨筋</u>		2.75- 1		相互相	関(N)			
0.207 mV		2.50-		⊐t−V	ンス(<u>H</u>)			
		2.25-		クロスス	ペクトル(<u>C</u>)			
		2.00-		伝達関	數(<u>T</u>)			
		1.75-		波形演	算	▶ 2項	€演算(B)…	
		1.50-		包絡線	(E)	単	項演算(<u>M</u>)…	

単項演算の式を入力します。

演算種別: 「÷」を選択します。 演算値: メモしておいた値を入力します。

「登録」ボタンを押してから、OK ボタンで閉じます。

波形演算について詳しくは、ヘルプを御覧下さい。

⑦縦軸が比率になって表示される。

縦軸の値が、入力した値を1.0 とした比率となって(~-1.0~0~1.0~)表示されます。 BIMUTASIIの仕様上、縦軸単位は前のままですが、単位を無視してください。

値をテキスト出力する場合は、ワンポイント集をごらんください。